When.com Web Search

  1. Ads

    related to: cubic spline excel formula definition

Search results

  1. Results From The WOW.Com Content Network
  2. Spline interpolation - Wikipedia

    en.wikipedia.org/wiki/Spline_interpolation

    Dynamic cubic splines with JSXGraph; Lectures on the theory and practice of spline interpolation; Paper which explains step by step how cubic spline interpolation is done, but only for equidistant knots. Numerical Recipes in C, Go to Chapter 3 Section 3-3; A note on cubic splines; Information about spline interpolation (including code in ...

  3. Spline (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Spline_(mathematics)

    A common spline is the natural cubic spline. A cubic spline has degree 3 with continuity C 2, i.e. the values and first and second derivatives are continuous. Natural means that the second derivatives of the spline polynomials are zero at the endpoints of the interval of interpolation.

  4. Bicubic interpolation - Wikipedia

    en.wikipedia.org/wiki/Bicubic_interpolation

    Bicubic interpolation can be accomplished using either Lagrange polynomials, cubic splines, or cubic convolution algorithm. In image processing, bicubic interpolation is often chosen over bilinear or nearest-neighbor interpolation in image resampling, when speed is not an issue.

  5. Smoothing spline - Wikipedia

    en.wikipedia.org/wiki/Smoothing_spline

    The most familiar example is the cubic smoothing spline, but there are many other possibilities, including for the case where is a vector quantity. Cubic spline definition [ edit ]

  6. Monotone cubic interpolation - Wikipedia

    en.wikipedia.org/wiki/Monotone_cubic_interpolation

    Example showing non-monotone cubic interpolation (in red) and monotone cubic interpolation (in blue) of a monotone data set. Monotone interpolation can be accomplished using cubic Hermite spline with the tangents modified to ensure the monotonicity of the resulting Hermite spline.

  7. Bézier curve - Wikipedia

    en.wikipedia.org/wiki/Bézier_curve

    Any series of 4 distinct points can be converted to a cubic Bézier curve that goes through all 4 points in order. Given the starting and ending point of some cubic Bézier curve, and the points along the curve corresponding to t = 1/3 and t = 2/3, the control points for the original Bézier curve can be recovered. [9]

  8. Lagrange polynomial - Wikipedia

    en.wikipedia.org/wiki/Lagrange_polynomial

    Solving an interpolation problem leads to a problem in linear algebra amounting to inversion of a matrix. Using a standard monomial basis for our interpolation polynomial () = =, we must invert the Vandermonde matrix to solve () = for the coefficients of ().

  9. Multivariate interpolation - Wikipedia

    en.wikipedia.org/wiki/Multivariate_interpolation

    Note that similar generalizations can be made for other types of spline interpolations, including Hermite splines. In regards to efficiency, the general formula can in fact be computed as a composition of successive C I N T {\displaystyle \mathrm {CINT} } -type operations for any type of tensor product splines, as explained in the tricubic ...