Search results
Results From The WOW.Com Content Network
In physics, the electric displacement field (denoted by D), also called electric flux density, is a vector field that appears in Maxwell's equations. It accounts for the electromagnetic effects of polarization and that of an electric field , combining the two in an auxiliary field .
Electric current per unit cross-section area A/m 2: L −2 I: conserved, intensive, vector Electric dipole moment: p: Measure of the separation of equal and opposite electric charges C⋅m L T I: vector Electric displacement field: D →: Strength of the electric displacement C/m 2: L −2 T I: vector field Electric field strength: E → ...
Electric field from positive to negative charges. Gauss's law describes the relationship between an electric field and electric charges: an electric field points away from positive charges and towards negative charges, and the net outflow of the electric field through a closed surface is proportional to the enclosed charge, including bound charge due to polarization of material.
electric flux: volt metre: V⋅m kg⋅m 3 ⋅s −3 ⋅A −1: E electric field strength volt per metre: V/m = N/C kg⋅m⋅A −1 ⋅s −3: D electric displacement field: coulomb per square metre: C/m 2: A⋅s⋅m −2: ε permittivity: farad per metre: F/m kg −1 ⋅m −3 ⋅A 2 ⋅s 4: χ e electric susceptibility (dimensionless) 1 1 p ...
For example, in atomic physics and chemistry, ... it defines a vector field. From the above formula it can be seen that the ... and D is the electric displacement field.
Position vector r is a point to calculate the electric field; r′ is a point in the charged object. Contrary to the strong analogy between (classical) gravitation and electrostatics, there are no "centre of charge" or "centre of electrostatic attraction" analogues. [citation needed] Electric transport
A field effect is the polarization of a molecule through space. The effect is a result of an electric field produced by charge localization in a molecule. [1] This field, which is substituent and conformation dependent, can influence structure and reactivity by manipulating the location of electron density in bonds and/or the overall molecule. [2]
D o and E o are the amplitudes of the displacement and electric fields, respectively, i is the imaginary unit, i 2 = − 1 . The response of a medium to static electric fields is described by the low-frequency limit of permittivity, also called the static permittivity ε s (also ε DC):