When.com Web Search

  1. Ad

    related to: repulsive forces in chemistry formula calculator with answers chart

Search results

  1. Results From The WOW.Com Content Network
  2. Intermolecular force - Wikipedia

    en.wikipedia.org/wiki/Intermolecular_force

    The induced dipole forces appear from the induction (also termed polarization), which is the attractive interaction between a permanent multipole on one molecule with an induced (by the former di/multi-pole) 31 on another. [12] [13] [14] This interaction is called the Debye force, named after Peter J. W. Debye.

  3. Born–Landé equation - Wikipedia

    en.wikipedia.org/wiki/Born–Landé_equation

    The Born–Landé equation is a means of calculating the lattice energy of a crystalline ionic compound. In 1918 [ 1 ] Max Born and Alfred Landé proposed that the lattice energy could be derived from the electrostatic potential of the ionic lattice and a repulsive potential energy term.

  4. Compressibility factor - Wikipedia

    en.wikipedia.org/wiki/Compressibility_factor

    Deviations of the compressibility factor, Z, from unity are due to attractive and repulsive intermolecular forces. At a given temperature and pressure, repulsive forces tend to make the volume larger than for an ideal gas; when these forces dominate Z is greater than unity. When attractive forces dominate, Z is less than unity.

  5. Nuclear force - Wikipedia

    en.wikipedia.org/wiki/Nuclear_force

    Comparison between the Nuclear Force and the Coulomb Force. a – residual strong force (nuclear force), rapidly decreases to insignificance at distances beyond about 2.5 fm, b – at distances less than ~ 0.7 fm between nucleons centres the nuclear force becomes repulsive, c – coulomb repulsion force between two protons (over 3 fm, force becomes the main), d – equilibrium position for ...

  6. Virial expansion - Wikipedia

    en.wikipedia.org/wiki/Virial_expansion

    The three-term virial equation or a cubic virial equation of state = + + has the simplicity of the Van der Waals equation of state without its singularity at v = b. Theoretically, the second virial coefficient represents bimolecular attraction forces, and the third virial term represents the repulsive forces among three molecules in close contact.

  7. Dispersion stabilized molecules - Wikipedia

    en.wikipedia.org/wiki/Dispersion_stabilized...

    Dispersion forces stabilizing a reactive moiety within a molecule is distinct from using steric bulk to protect that reactive moiety. Adding "steric hindrance" to a molecule's reactive site through bulky groups is a common strategy in molecular chemistry to stabilize reactive moieties within a molecule. [3]

  8. Coulomb barrier - Wikipedia

    en.wikipedia.org/wiki/Coulomb_barrier

    A positive value of U is due to a repulsive force, so interacting particles are at higher energy levels as they get closer. A negative potential energy indicates a bound state (due to an attractive force). The Coulomb barrier increases with the atomic numbers (i.e. the number of protons) of the colliding nuclei:

  9. Neutron–proton ratio - Wikipedia

    en.wikipedia.org/wiki/Neutron–proton_ratio

    This is because electrical repulsive forces between protons scale with distance differently than strong nuclear force attractions. In particular, most pairs of protons in large nuclei are not far enough apart, such that electrical repulsion dominates over the strong nuclear force, and thus proton density in stable larger nuclei must be lower ...