When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rosenbrock function - Wikipedia

    en.wikipedia.org/wiki/Rosenbrock_function

    Plot of the Rosenbrock function of two variables. Here a = 1 , b = 100 {\displaystyle a=1,b=100} , and the minimum value of zero is at ( 1 , 1 ) {\displaystyle (1,1)} . In mathematical optimization , the Rosenbrock function is a non- convex function , introduced by Howard H. Rosenbrock in 1960, which is used as a performance test problem for ...

  3. Test functions for optimization - Wikipedia

    en.wikipedia.org/wiki/Test_functions_for...

    The test functions used to evaluate the algorithms for MOP were taken from Deb, [4] Binh et al. [5] and Binh. [6] The software developed by Deb can be downloaded, [7] which implements the NSGA-II procedure with GAs, or the program posted on Internet, [8] which implements the NSGA-II procedure with ES.

  4. Rosenbrock methods - Wikipedia

    en.wikipedia.org/wiki/Rosenbrock_methods

    The idea of Rosenbrock search is also used to initialize some root-finding routines, such as fzero (based on Brent's method) in Matlab. Rosenbrock search is a form of derivative-free search but may perform better on functions with sharp ridges. [6] The method often identifies such a ridge which, in many applications, leads to a solution. [7]

  5. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    The idea is to take repeated steps in the opposite direction of the gradient (or approximate gradient) of the function at the current point, because this is the direction of steepest descent. Conversely, stepping in the direction of the gradient will lead to a trajectory that maximizes that function; the procedure is then known as gradient ascent.

  6. Rosenbrock system matrix - Wikipedia

    en.wikipedia.org/wiki/Rosenbrock_system_matrix

    The short form of the Rosenbrock system matrix has been widely used in H-infinity methods in control theory, where it is also referred to as packed form; see command pck in MATLAB. [3] An interpretation of the Rosenbrock System Matrix as a Linear Fractional Transformation can be found in. [ 4 ]

  7. Backtracking line search - Wikipedia

    en.wikipedia.org/wiki/Backtracking_line_search

    Several other methods which have good theoretical guarantee, such as diminishing learning rates or standard GD with learning rate <1/L – both require the gradient of the objective function to be Lipschitz continuous, turn out to be a special case of Backtracking line search or satisfy Armijo's condition.

  8. Job-shop scheduling - Wikipedia

    en.wikipedia.org/wiki/Job-shop_scheduling

    Machine learning has been recently used to predict the optimal makespan of a JSP instance without actually producing the optimal schedule. [7] Preliminary results show an accuracy of around 80% when supervised machine learning methods were applied to classify small randomly generated JSP instances based on their optimal scheduling efficiency ...

  9. Category:Test functions for optimization - Wikipedia

    en.wikipedia.org/wiki/Category:Test_functions...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file

  1. Related searches rosenbrock test function in machine learning javatpoint programming java

    rosenbrock function wikipediarosenbrock's banana function
    rosenbrock methodsrosenbrock's banana
    rosenbrock coordinates