Search results
Results From The WOW.Com Content Network
The hydrogen line, 21 centimeter line, or H I line [a] is a spectral line that is created by a change in the energy state of solitary, electrically neutral hydrogen atoms. It is produced by a spin -flip transition, which means the direction of the electron's spin is reversed relative to the spin of the proton.
The energy of an emitted photon corresponds to the energy difference between the two states. Because the energy of each state is fixed, the energy difference between them is fixed, and the transition will always produce a photon with the same energy. The spectral lines are grouped into series according to n′. Lines are named sequentially ...
The higher the temperature of the gas, the wider the distribution of velocities in the gas. Since the spectral line is a combination of all of the emitted radiation, the higher the temperature of the gas, the broader the spectral line emitted from that gas. This broadening effect is described by a Gaussian profile and there is no associated shift.
Helium is the least water-soluble monatomic gas, [96] and one of the least water-soluble of any gas (CF 4, SF 6, and C 4 F 8 have lower mole fraction solubilities: 0.3802, 0.4394, and 0.2372 x 2 /10 −5, respectively, versus helium's 0.70797 x 2 /10 −5), [97] and helium's index of refraction is closer to unity than that of any other gas. [98]
[4] [5] Fowler managed to produce similar lines from a hydrogen–helium mixture in 1912, and supported Pickering's conclusion as to their origin. [6] Niels Bohr , however, included an analysis of the series in his 'trilogy' [ 7 ] [ 8 ] on atomic structure [ 9 ] and concluded that Pickering and Fowler were wrong and that the spectral lines ...
The spectrum appears in a series of lines called the line spectrum. This line spectrum is called an atomic spectrum when it originates from an atom in elemental form. Each element has a different atomic spectrum. The production of line spectra by the atoms of an element indicate that an atom can radiate only a certain amount of energy.
The Fraunhofer lines are typical spectral absorption lines. Absorption lines are narrow regions of decreased intensity in a spectrum, which are the result of photons being absorbed as light passes from the source to the detector. In the Sun, Fraunhofer lines are a result of gas in the Sun's atmosphere and outer photosphere. These regions have ...
The "visible" hydrogen emission spectrum lines in the Balmer series. H-alpha is the red line at the right. Four lines (counting from the right) are formally in the visible range. Lines five and six can be seen with the naked eye, but are considered to be ultraviolet as they have wavelengths less than 400 nm.