When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Decision tree pruning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_pruning

    Pruning is a data compression technique in machine learning and search algorithms that reduces the size of decision trees by removing sections of the tree that are non-critical and redundant to classify instances. Pruning reduces the complexity of the final classifier, and hence improves predictive accuracy by the reduction of overfitting.

  3. Model order reduction - Wikipedia

    en.wikipedia.org/wiki/Model_order_reduction

    Model order reduction aims to lower the computational complexity of such problems, for example, in simulations of large-scale dynamical systems and control systems. By a reduction of the model's associated state space dimension or degrees of freedom , an approximation to the original model is computed which is commonly referred to as a reduced ...

  4. Dimensionality reduction - Wikipedia

    en.wikipedia.org/wiki/Dimensionality_reduction

    The process of feature selection aims to find a suitable subset of the input variables (features, or attributes) for the task at hand.The three strategies are: the filter strategy (e.g., information gain), the wrapper strategy (e.g., accuracy-guided search), and the embedded strategy (features are added or removed while building the model based on prediction errors).

  5. Reduction (complexity) - Wikipedia

    en.wikipedia.org/wiki/Reduction_(complexity)

    That reduction function must be a computable function. In particular, we often show that a problem P is undecidable by showing that the halting problem reduces to P. The complexity classes P, NP and PSPACE are closed under (many-one, "Karp") polynomial-time reductions. The complexity classes L, NL, P, NP and PSPACE are closed under log-space ...

  6. Many-one reduction - Wikipedia

    en.wikipedia.org/wiki/Many-one_reduction

    Many-one reductions are valuable because most well-studied complexity classes are closed under some type of many-one reducibility, including P, NP, L, NL, co-NP, PSPACE, EXP, and many others. It is known for example that the first four listed are closed up to the very weak reduction notion of polylogarithmic time projections.

  7. Sample complexity - Wikipedia

    en.wikipedia.org/wiki/Sample_complexity

    The sample complexity of a machine learning algorithm represents ... the sample-complexity is a linear function of the VC ... in order to reduce the cost ...

  8. Independent component analysis - Wikipedia

    en.wikipedia.org/wiki/Independent_component_analysis

    Complexity: The temporal complexity of any signal mixture is greater than that of its simplest constituent source signal. Those principles contribute to the basic establishment of ICA. If the signals extracted from a set of mixtures are independent and have non-Gaussian distributions or have low complexity, then they must be source signals.

  9. Computational complexity - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity

    It is impossible to count the number of steps of an algorithm on all possible inputs. As the complexity generally increases with the size of the input, the complexity is typically expressed as a function of the size n (in bits) of the input, and therefore, the complexity is a function of n. However, the complexity of an algorithm may vary ...