When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Reduction potential - Wikipedia

    en.wikipedia.org/wiki/Reduction_potential

    In aqueous solutions, redox potential is a measure of the tendency of the solution to either gain or lose electrons in a reaction. A solution with a higher (more positive) reduction potential than some other molecule will have a tendency to gain electrons from this molecule (i.e. to be reduced by oxidizing this other molecule) and a solution with a lower (more negative) reduction potential ...

  3. Standard electrode potential - Wikipedia

    en.wikipedia.org/wiki/Standard_electrode_potential

    The highly positive standard reduction potential of F 2 means it is reduced easily and is therefore a good oxidizing agent. In contrast, the greatly negative standard reduction potential of Li + indicates that it is not easily reduced. Instead, Li (s) would rather undergo oxidation (hence it is a good reducing agent).

  4. Standard electrode potential (data page) - Wikipedia

    en.wikipedia.org/wiki/Standard_electrode...

    The data below tabulates standard electrode potentials (E°), in volts relative to the standard hydrogen electrode (SHE), at: . Temperature 298.15 K (25.00 °C; 77.00 °F); ...

  5. Redox - Wikipedia

    en.wikipedia.org/wiki/Redox

    The reduction potential is a measure of the tendency of the oxidizing agent to be reduced. Its value is zero for H + + e − → 1 ⁄ 2 H 2 by definition, positive for oxidizing agents stronger than H + (e.g., +2.866 V for F 2) and negative for oxidizing agents that are weaker than H + (e.g., −0.763V for Zn 2+). [8]: 873

  6. Table of standard reduction potentials for half-reactions ...

    en.wikipedia.org/wiki/Table_of_standard...

    The formal potential is thus the reversible potential of an electrode at equilibrium immersed in a solution where reactants and products are at unit concentration. [4] If any small incremental change of potential causes a change in the direction of the reaction, i.e. from reduction to oxidation or vice versa , the system is close to equilibrium ...

  7. Nernst equation - Wikipedia

    en.wikipedia.org/wiki/Nernst_equation

    In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing ...

  8. Oxidation state - Wikipedia

    en.wikipedia.org/wiki/Oxidation_state

    In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to other atoms are fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. Conceptually, the oxidation state may be positive, negative or zero.

  9. Zeta potential - Wikipedia

    en.wikipedia.org/wiki/Zeta_potential

    When the potential is small, attractive forces may exceed this repulsion and the dispersion may break and flocculate. So, colloids with high zeta potential (negative or positive) are electrically stabilized while colloids with low zeta potentials tend to coagulate or flocculate as outlined in the table. [7]