Search results
Results From The WOW.Com Content Network
Human somatic variations are somatic mutations (mutations that occur in somatic cells) both at early stages of development and in adult cells. These variations can lead either to pathogenic phenotypes or not, even if their function in healthy conditions is not completely clear yet.
Somatic mutations can also be passed down to offspring in organisms that can reproduce asexually, without production of gametes. For instance, animals in the cnidarian genus Hydra can reproduce asexually through the mechanism of budding (they can also reproduce sexually). In hydra, a new bud develops directly from somatic cells of the parent ...
Somatic hypermutation (or SHM) is a cellular mechanism by which the immune system adapts to the new foreign elements that confront it (e.g. microbes).A major component of the process of affinity maturation, SHM diversifies B cell receptors used to recognize foreign elements and allows the immune system to adapt its response to new threats during the lifetime of an organism. [1]
V(D)J recombination (variable–diversity–joining rearrangement) is the mechanism of somatic recombination that occurs only in developing lymphocytes during the early stages of T and B cell maturation.
Somatic is also defined as relating to the wall of the body cavity, particularly as distinguished from the head, limbs, or viscera. It is also used in the term somatic nervous system , which is the portion of the vertebrate nervous system that regulates voluntary movements of the body.
A change in the genetic structure that is not inherited from a parent, and also not passed to offspring, is called a somatic mutation. [89] Somatic mutations are not inherited by an organism's offspring because they do not affect the germline. However, they are passed down to all the progeny of a mutated cell within the same organism during ...
Somatic evolution is the accumulation of mutations and epimutations in somatic cells (the cells of a body, as opposed to germ plasm and stem cells) during a lifetime, and the effects of those mutations and epimutations on the fitness of those cells.
The Weismann barrier, proposed by August Weismann, is the strict distinction between the "immortal" germ cell lineages producing gametes and "disposable" somatic cells in animals (but not plants), in contrast to Charles Darwin's proposed pangenesis mechanism for inheritance.