When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Power optimizer - Wikipedia

    en.wikipedia.org/wiki/Power_optimizer

    A power optimizer is a DC to DC converter technology developed to maximize the energy harvest from solar photovoltaic or wind turbine systems. They do this by individually tuning the performance of the panel or wind turbine through maximum power point tracking, and optionally tuning the output to match the performance of the string inverter (DC to AC inverter).

  3. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    TensorFlow.nn is a module for executing primitive neural network operations on models. [40] Some of these operations include variations of convolutions (1/2/3D, Atrous, depthwise), activation functions ( Softmax , RELU , GELU, Sigmoid , etc.) and their variations, and other operations ( max-pooling , bias-add, etc.).

  4. Hyperparameter (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_(machine...

    In machine learning, a hyperparameter is a parameter that can be set in order to define any configurable part of a model's learning process. Hyperparameters can be classified as either model hyperparameters (such as the topology and size of a neural network) or algorithm hyperparameters (such as the learning rate and the batch size of an optimizer).

  5. SolarEdge - Wikipedia

    en.wikipedia.org/wiki/SolarEdge

    SolarEdge Technologies, Inc. is an Israeli company that developed a DC optimized inverter system. In 2023, SolarEdge is critically noted for losing over 70% of its market value, also being the worst performing stock according to many critics, becoming the most losing stock in the S&P 500 for the year, which resulted in its delisting from the index.

  6. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    Later in the 1950s, Frank Rosenblatt used SGD to optimize his perceptron model, demonstrating the first applicability of stochastic gradient descent to neural networks. [12] Backpropagation was first described in 1986, with stochastic gradient descent being used to efficiently optimize parameters across neural networks with multiple hidden ...

  7. Hyperparameter optimization - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_optimization

    In machine learning, hyperparameter optimization [1] or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts.

  8. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...

  9. Bayesian optimization - Wikipedia

    en.wikipedia.org/wiki/Bayesian_optimization

    Bayesian optimization of a function (black) with Gaussian processes (purple). Three acquisition functions (blue) are shown at the bottom. [8]Bayesian optimization is typically used on problems of the form (), where is a set of points, , which rely upon less (or equal to) than 20 dimensions (,), and whose membership can easily be evaluated.