When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Electric field - Wikipedia

    en.wikipedia.org/wiki/Electric_field

    Illustration of the electric field between two parallel conductive plates of finite size (known as a parallel plate capacitor). In the middle of the plates, far from any edges, the electric field is very nearly uniform. A uniform field is one in which the electric field is constant at every point.

  3. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    As such, they are often written as E(x, y, z, t) (electric field) and B(x, y, z, t) (magnetic field). If only the electric field (E) is non-zero, and is constant in time, the field is said to be an electrostatic field. Similarly, if only the magnetic field (B) is non-zero and is constant in time, the field is said to be a magnetostatic field.

  4. Electric-field integral equation - Wikipedia

    en.wikipedia.org/wiki/Electric-field_integral...

    The electric-field integral equation is a relationship that allows the calculation of an electric field (E) generated by an electric current distribution (J).

  5. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Position vector r is a point to calculate the electric field; r′ is a point in the charged object. Contrary to the strong analogy between (classical) gravitation and electrostatics, there are no "centre of charge" or "centre of electrostatic attraction" analogues. [citation needed] Electric transport

  6. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    In the electric and magnetic field formulation there are four equations that determine the fields for given charge and current distribution. A separate law of nature, the Lorentz force law, describes how the electric and magnetic fields act on charged particles and currents. By convention, a version of this law in the original equations by ...

  7. Poynting vector - Wikipedia

    en.wikipedia.org/wiki/Poynting_vector

    Poynting vector in a static field, where E is the electric field, H the magnetic field, and S the Poynting vector. The consideration of the Poynting vector in static fields shows the relativistic nature of the Maxwell equations and allows a better understanding of the magnetic component of the Lorentz force , q ( v × B ) .

  8. Jefimenko's equations - Wikipedia

    en.wikipedia.org/wiki/Jefimenko's_equations

    The formula provides a natural generalization of the Coulomb's law for cases where the source charge is moving: = [′ ′ + ′ (′ ′) + ′] = ′ Here, and are the electric and magnetic fields respectively, is the electric charge, is the vacuum permittivity (electric field constant) and is the speed of light.

  9. Displacement current - Wikipedia

    en.wikipedia.org/wiki/Displacement_current

    With some change of symbols (and units) combined with the results deduced in the section § Current in capacitors (r → J, R → −E, and the material constant E −2 → 4πε r ε 0 these equations take the familiar form between a parallel plate capacitor with uniform electric field, and neglecting fringing effects around the edges of the ...