Search results
Results From The WOW.Com Content Network
The inverse Gaussian distribution has several properties analogous to a Gaussian distribution. The name can be misleading: it is an "inverse" only in that, while the Gaussian describes a Brownian motion's level at a fixed time, the inverse Gaussian describes the distribution of the time a Brownian motion with positive drift takes to reach a ...
The inverse Gaussian distribution is a NEF with a cubic variance function. The parameterization of most of the above distributions has been written differently from the parameterization commonly used in textbooks and the above linked pages.
Inverse distributions arise in particular in the Bayesian context of prior distributions and posterior distributions for scale parameters. In the algebra of random variables , inverse distributions are special cases of the class of ratio distributions , in which the numerator random variable has a degenerate distribution .
The Gaussian distribution belongs to the family of stable distributions which are the attractors of sums of independent, identically distributed distributions whether or not the mean or variance is finite. Except for the Gaussian which is a limiting case, all stable distributions have heavy tails and infinite variance.
In probability theory and statistics, the inverse gamma distribution is a two-parameter family of continuous probability distributions on the positive real line, which is the distribution of the reciprocal of a variable distributed according to the gamma distribution.
In probability theory and statistics, a shape parameter (also known as form parameter) [1] is a kind of numerical parameter of a parametric family of probability distributions [2] that is neither a location parameter nor a scale parameter (nor a function of these, such as a rate parameter).
The class of normal-inverse Gaussian distributions is closed under convolution in the following sense: [9] if and are independent random variables that are NIG-distributed with the same values of the parameters and , but possibly different values of the location and scale parameters, , and ,, respectively, then + is NIG-distributed with parameters ,, + and +.
In probability theory and statistics, the normal-inverse-gamma distribution (or Gaussian-inverse-gamma distribution) is a four-parameter family of multivariate continuous probability distributions. It is the conjugate prior of a normal distribution with unknown mean and variance .