When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Karplus equation - Wikipedia

    en.wikipedia.org/wiki/Karplus_equation

    where J is the 3 J coupling constant, is the dihedral angle, and A, B, and C are empirically derived parameters whose values depend on the atoms and substituents involved. [3] The relationship may be expressed in a variety of equivalent ways e.g. involving cos 2φ rather than cos 2 φ —these lead to different numerical values of A , B , and C ...

  3. J-coupling - Wikipedia

    en.wikipedia.org/wiki/J-coupling

    Example 1 H NMR spectrum (1-dimensional) of ethanol plotted as signal intensity vs. chemical shift.There are three different types of H atoms in ethanol regarding NMR. The hydrogen (H) on the −OH group is not coupling with the other H atoms and appears as a singlet, but the CH 3 − and the −CH 2 − hydrogens are coupling with each other, resulting in a triplet and quartet respectively.

  4. Quantum mechanics of nuclear magnetic resonance (NMR ...

    en.wikipedia.org/wiki/Quantum_mechanics_of...

    Nuclear magnetic resonance (NMR) spectroscopy uses the intrinsic magnetic moment that arises from the spin angular momentum of a spin-active nucleus. [1] If the element of interest has a nuclear spin that is not 0, [1] the nucleus may exist in different spin angular momentum states, where the energy of these states can be affected by an external magnetic field.

  5. Fluorine-19 nuclear magnetic resonance spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Fluorine-19_nuclear...

    19 F-19 F coupling constants are generally larger than 1 H-1 H coupling constants. Long range 19 F-19 F coupling, (2 J, 3 J, 4 J or even 5 J) are commonly observed. Generally, the longer range the coupling, the smaller the value. [11] Hydrogen couples with fluorine, which is very typical to see in 19 F spectrum. With a geminal hydrogen, the ...

  6. Fermi contact interaction - Wikipedia

    en.wikipedia.org/wiki/Fermi_contact_interaction

    The interaction was first derived by Enrico Fermi in 1930. [7] A classical derivation of this term is contained in "Classical Electrodynamics" by J. D. Jackson. [8] In short, the classical energy may be written in terms of the energy of one magnetic dipole moment in the magnetic field B(r) of another dipole.

  7. Coupling constant - Wikipedia

    en.wikipedia.org/wiki/Coupling_constant

    The coupling constant determines the magnitude of the part with respect to the part (or between two sectors of the interaction part if several fields that couple differently are present). For example, the electric charge of a particle is a coupling constant that characterizes an interaction with two charge-carrying fields and one photon field ...

  8. Solomon equations - Wikipedia

    en.wikipedia.org/wiki/Solomon_equations

    In NMR spectroscopy, the Solomon equations describe the dipolar relaxation process of a system consisting of two spins. [1] They take the form of the following differential equations : [ 2 ] d I 1 z d t = − R z 1 ( I 1 z − I 1 z 0 ) − σ 12 ( I 2 z − I 2 z 0 ) {\displaystyle {d{I_{1z}} \over dt}=-R_{z}^{1}(I_{1z}-I_{1z}^{0})-\sigma _{12 ...

  9. Two-dimensional nuclear magnetic resonance spectroscopy

    en.wikipedia.org/wiki/Two-dimensional_nuclear...

    While 1D NMR is more straightforward and ideal for identifying basic structural features, COSY enhances the capabilities of NMR by providing deeper insights into molecular connectivity. The two-dimensional spectrum that results from the COSY experiment shows the frequencies for a single isotope, most commonly hydrogen (1 H) along both axes.