Ads
related to: tesla distance calculator
Search results
Results From The WOW.Com Content Network
Magnetic induction B (also known as magnetic flux density) has the SI unit tesla [T or Wb/m 2]. [1] One tesla is equal to 10 4 gauss. Magnetic field drops off as the inverse cube of the distance ( 1 / distance 3 ) from a dipole source. Energy required to produce laboratory magnetic fields increases with the square of magnetic field. [2]
The tesla (symbol: T) is the unit of magnetic flux density (also called magnetic B-field strength) in the International System of Units (SI). One tesla is equal to one weber per square metre .
The conversion factor is 10 8 maxwell per weber, since flux is the integral of field over an area, area having the units of the square of distance, thus 10 4 G/T (magnetic field conversion factor) times the square of 10 2 cm/m (linear distance conversion factor). 10 8 Mx/Wb = 10 4 G/T × (10 2 cm/m) 2.
A Tesla coil is an electrical resonant transformer circuit designed by inventor Nikola Tesla in 1891. [1] It is used to produce high-voltage, low-current, high-frequency alternating-current electricity. [2] [3] Tesla experimented with a number of different configurations consisting of two, or sometimes three, coupled resonant electric circuits.
In the CGS system, the unit of the H-field is the oersted and the unit of the B-field is the gauss.In the SI system, the unit ampere per meter (A/m), which is equivalent to newton per weber, is used for the H-field and the unit of tesla is used for the B-field.
Pressure per unit distance pascal/m L −2 M 1 T −2: vector Temperature gradient: steepest rate of temperature change at a particular location K/m L −1 Θ: vector Torque: τ: Product of a force and the perpendicular distance of the force from the point about which it is exerted newton-metre (N⋅m) L 2 M T −2
is the normal distance between the two parallel faces of the magnets; is the distance between the magnetic dipole axes of the two magnets. With their magnetic dipole aligned, the force can be computed analytically using elliptic integrals. [7]
The magnetic moment also expresses the magnetic force effect of a magnet. The magnetic field of a magnetic dipole is proportional to its magnetic dipole moment. The dipole component of an object's magnetic field is symmetric about the direction of its magnetic dipole moment, and decreases as the inverse cube of the distance from the object.