Search results
Results From The WOW.Com Content Network
This formula was derived in 1744 by the Swiss mathematician Leonhard Euler. [2] The column will remain straight for loads less than the critical load. The critical load is the greatest load that will not cause lateral deflection (buckling). For loads greater than the critical load, the column will deflect laterally.
The resistance to vertical flow (R i) of the i th soil layer with a saturated thickness d i and vertical hydraulic conductivity K v i is: = Expressing K v i in m/day and d i in m, the resistance (R i) is expressed in days. The total resistance (R t) of the aquifer is the sum of each layer's resistance: [8]
The most commonly used K value in Europe is the Fikentscher K value (referenced in DIN EN ISO 1628-1) obtained by dilute solution viscometry and solving Fikentscher equation. K Ic or linear-elastic plane-strain fracture toughness of materials; rate of change of curvature, used to assess and design vertical alignment of road and rail crests and dips
The value of K is given in most structural handbooks. The theory of the behavior of columns was investigated in 1757 by mathematician Leonhard Euler. He derived the formula, termed Euler's critical load, that gives the maximum axial load that a long, slender, ideal column can carry without buckling. An ideal column is one that is:
Graph of Johnson's parabola (plotted in red) against Euler's formula, with the transition point indicated. The area above the curve indicates failure. The Johnson parabola creates a new region of failure. In structural engineering, Johnson's parabolic formula is an empirically based equation for calculating the critical buckling stress of a column.
The curve () describes the deflection of the beam in the direction at some position (recall that the beam is modeled as a one-dimensional object). is a distributed load, in other words a force per unit length (analogous to pressure being a force per area); it may be a function of , , or other variables.
The k v factor or value as it is also called is defined in VDI/VDE Richtlinien No. 2173. [5] A simplified version of the definition is: The k v factor of a valve indicates "The water flow in m 3 /h, at a pressure drop across the valve of 1 kgf/cm 2 when the valve is completely open.
Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature.For a curve, it equals the radius of the circular arc which best approximates the curve at that point.