Search results
Results From The WOW.Com Content Network
As more became known about neurosecretory cells, the difference between the actions of nerve communication and endocrine hormone release become less clear. Like the average neuron, these cells conduct electrical impulses along the axon but unlike these neurons, neurosecretion produces neurohormones that are released into the body’s circulation.
Nerve impulse (depolarization) reaches the axon terminal. Depolarization of the presynaptic membrane causes voltage gated Ca2++ to open in the axon terminals; Calcium diffuses into the axon terminal causing vesicles adjacent to axon terminals to fuse with the plasma membrane. Fusing results in release of the neurotransmitter into the synaptic ...
The synthesis, control, and release of those hormones is co-regulated by hormonal, local and synaptic signals (neurotransmitters). [6] [7] The neurons secreting various hormones have been found to discharge impulses in burst, causing a pulsatile release which is more efficient than a continuous release. [8] Hypophysiotropic hormones include:
An axon can divide into many branches called telodendria (Greek for 'end of tree'). At the end of each telodendron is an axon terminal (also called a terminal bouton or synaptic bouton, or end-foot). [20] Axon terminals contain synaptic vesicles that store the neurotransmitter for release at the synapse. This makes multiple synaptic connections ...
The GHRH neurons are located in the arcuate nucleus of the hypothalamus, whereas the somatostatin cells involved in growth hormone regulation are in the periventricular nucleus. These two neuronal systems project axons to the median eminence, where they release their peptides into portal blood vessels for transport to the anterior pituitary ...
The action potential, which typically starts at the axon hillock, propagates down the length of the axon to the axon terminals where it triggers the release of neurotransmitters, but also backwards into the dendrite (retrograde propagation), providing an important signal for spike-timing-dependent plasticity (STDP). [4]
Axon terminals (also called terminal boutons, synaptic boutons, end-feet, or presynaptic terminals) are distal terminations of the branches of an axon. An axon, also called a nerve fiber, is a long, slender projection of a nerve cell that conducts electrical impulses called action potentials away from the neuron's cell body to transmit those ...
Parvocellular neurosecretory cells are small neurons that produce hypothalamic releasing and inhibiting hormones. The cell bodies of these neurons are located in various nuclei of the hypothalamus or in closely related areas of the basal brain, mainly in the medial zone of the hypothalamus.