Ads
related to: kinetic vibration isolators cataloguesupplyhouse.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
Passive vibration isolation is a vast subject, since there are many types of passive vibration isolators used for many different applications. A few of these applications are for industrial equipment such as pumps, motors, HVAC systems, or washing machines; isolation of civil engineering structures from earthquakes (base isolation), [ 2 ...
One proposal to reduce vibration on NASA's Ares solid fuel booster was to use 16 tuned mass dampers as part of a design strategy to reduce peak loads from 6g to 0.25g, with the TMDs being responsible for the reduction from 1g to 0.25g, the rest being done by conventional vibration isolators between the upper stages and the booster. [7] [8]
Acoustic damping: Vibration isolation prevents vibration from transferring beyond the device into another material. Damping mounts have progressed in the industry to offer vibrational resistance in many degrees of freedom. Recent advances include shock isolators damping in at least six degrees of freedom. [3]
"The most radical feature of his car was the novel suspension of its six-cylinder engine so as to cut down vibration. The engine was supported on three points and rested on rubber mounts. Noise and vibration were much less. There was still a lot of movement of the engine when idling, but under a load it settled down.
In earthquake engineering, vibration control is a set of technical means aimed to mitigate seismic impacts in building and non-building structures. All seismic vibration control devices may be classified as passive, active or hybrid [1] where: Base isolator being tested at the UCSD Caltrans-SRMD facility
III. The movement of the dynamic system perpendicular to the desired direction of the motion is usually the wasted kinetic energy in the system (e.g. the vertical motion of an automobile suspension is wasted to heat energy in the shock absorbers, or vibration of an aircraft wing is converted into heat energy through structural damping). IV.