When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Modus tollens - Wikipedia

    en.wikipedia.org/wiki/Modus_tollens

    If P, then Q. Not Q. Therefore, not P. The first premise is a conditional ("if-then") claim, such as P implies Q. The second premise is an assertion that Q, the consequent of the conditional claim, is not the case. From these two premises it can be logically concluded that P, the antecedent of the conditional claim, is also not the case. For ...

  3. Necessity and sufficiency - Wikipedia

    en.wikipedia.org/wiki/Necessity_and_sufficiency

    The assertion that Q is necessary for P is colloquially equivalent to "P cannot be true unless Q is true" or "if Q is false, then P is false". [9] [1] By contraposition, this is the same thing as "whenever P is true, so is Q". The logical relation between P and Q is expressed as "if P, then Q" and denoted "PQ" (P implies Q).

  4. Contraposition - Wikipedia

    en.wikipedia.org/wiki/Contraposition

    In the proposition "If P, then Q", the occurrence of P is sufficient reason for the occurrence of Q. P, as an individual or a class, materially implicates Q, but the relation of Q to P is such that the converse proposition "If Q, then P" does not necessarily have sufficient condition. The rule of inference for sufficient condition is modus ...

  5. Denying the antecedent - Wikipedia

    en.wikipedia.org/wiki/Denying_the_antecedent

    If P, then Q. Not P. Therefore, not Q. which may also be phrased as (P implies Q) (therefore, not-P implies not-Q) [1] Arguments of this form are invalid. Informally, this means that arguments of this form do not give good reason to establish their conclusions, even if their premises are true.

  6. If and only if - Wikipedia

    en.wikipedia.org/wiki/If_and_only_if

    In most logical systems, one proves a statement of the form "P iff Q" by proving either "if P, then Q" and "if Q, then P", or "if P, then Q" and "if not-P, then not-Q". Proving these pairs of statements sometimes leads to a more natural proof, since there are not obvious conditions in which one would infer a biconditional directly.

  7. Modus ponens - Wikipedia

    en.wikipedia.org/wiki/Modus_ponens

    In propositional logic, modus ponens (/ ˈ m oʊ d ə s ˈ p oʊ n ɛ n z /; MP), also known as modus ponendo ponens (from Latin 'mode that by affirming affirms'), [1] implication elimination, or affirming the antecedent, [2] is a deductive argument form and rule of inference. [3] It can be summarized as "P implies Q. P is true. Therefore, Q ...

  8. Disjunctive syllogism - Wikipedia

    en.wikipedia.org/wiki/Disjunctive_syllogism

    Equivalently, if P is true or Q is true and P is false, then Q is true. The name "disjunctive syllogism" derives from its being a syllogism, a three-step argument, and the use of a logical disjunction (any "or" statement.) For example, "P or Q" is a disjunction, where P and Q are called the statement's disjuncts.

  9. Material implication (rule of inference) - Wikipedia

    en.wikipedia.org/wiki/Material_implication_(rule...

    The rule states that P implies Q is logically equivalent to not-or and that either form can replace the other in logical proofs. In other words, if P {\displaystyle P} is true, then Q {\displaystyle Q} must also be true, while if Q {\displaystyle Q} is not true, then P {\displaystyle P} cannot be true either; additionally, when P {\displaystyle ...