Search results
Results From The WOW.Com Content Network
This list of protein subcellular localisation prediction tools includes software, databases, and web services that are used for protein subcellular localization prediction. Some tools are included that are commonly used to infer location through predicted structural properties, such as signal peptide or transmembrane helices , and these tools ...
Protein–protein interaction prediction is a field combining bioinformatics and structural biology in an attempt to identify and catalog physical interactions between pairs or groups of proteins. Understanding protein–protein interactions is important for the investigation of intracellular signaling pathways, modelling of protein complex ...
The Swiss-model Workspace integrates programs and databases required for protein structure prediction and modelling in a web-based workspace. Depending on the complexity of the modelling task, different modes of use can be applied, in which the user has different levels of control over individual modelling steps: automated mode, alignment mode, and project mode.
Protein–protein docking, the prediction of protein–protein interactions based only on the three-dimensional protein structures from X-ray diffraction of protein crystals might not be satisfactory. [44] [45] Network analysis includes the analysis of interaction networks using methods of graph theory or statistical methods.
Constituent amino-acids can be analyzed to predict secondary, tertiary and quaternary protein structure. This list of protein structure prediction software summarizes notable used software tools in protein structure prediction, including homology modeling, protein threading, ab initio methods, secondary structure prediction, and transmembrane helix and signal peptide prediction.
Critical Assessment of PRediction of Interactions (CAPRI) is a community-wide experiment in modelling the molecular structure of protein complexes, otherwise known as protein–protein docking. The CAPRI [ 1 ] is an ongoing series of events in which researchers throughout the community attempt to dock the same proteins, as provided by the ...
I-TASSER is a template-based method for protein structure and function prediction. [1] The pipeline consists of six consecutive steps: 1, Secondary structure prediction by PSSpred; 2, Template detection by LOMETS [6] 3, Fragment structure assembly using replica-exchange Monte Carlo simulation [7]
DP-Bind combines multiple methods to make a consensus prediction based on the profile of evolutionary conservation and properties of the input protein sequence. Profile of evolutionary conservation is automatically generated by the web-server. Knowledge of the protein structure is not required. [7]