Search results
Results From The WOW.Com Content Network
A large standard deviation indicates that the data points can spread far from the mean and a small standard deviation indicates that they are clustered closely around the mean. For example, each of the three populations {0, 0, 14, 14}, {0, 6, 8, 14} and {6, 6, 8, 8} has a mean of 7. Their standard deviations are 7, 5, and 1, respectively.
For example, a variable measured in meters will have a variance measured in meters squared. For this reason, describing data sets via their standard deviation or root mean square deviation is often preferred over using the variance. In the dice example the standard deviation is √ 2.9 ≈ 1.7, slightly larger than the expected absolute ...
According to this idea, a process that fits 6 sigma between the process mean and the nearest specification limit in a short-term study will in the long term fit only 4.5 sigma – either because the process mean will move over time, or because the long-term standard deviation of the process will be greater than that observed in the short term ...
About 68% of values drawn from a normal distribution are within one standard deviation σ from the mean; about 95% of the values lie within two standard deviations; and about 99.7% are within three standard deviations. [8] This fact is known as the 68–95–99.7 (empirical) rule, or the 3-sigma rule.
Bias in standard deviation for autocorrelated data. The figure shows the ratio of the estimated standard deviation to its known value (which can be calculated analytically for this digital filter), for several settings of α as a function of sample size n. Changing α alters the variance reduction ratio of the filter, which is known to be
Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered. On the other hand, when the variance is small, the data in the set is clustered.
The data set [90, 100, 110] has more variability. Its standard deviation is 10 and its average is 100, giving the coefficient of variation as 10 / 100 = 0.1; The data set [1, 5, 6, 8, 10, 40, 65, 88] has still more variability. Its standard deviation is 32.9 and its average is 27.9, giving a coefficient of variation of 32.9 / 27.9 = 1.18
This became the universal standard form of sigma during late antiquity and the Middle Ages. Today, it is known as lunate sigma (uppercase Ϲ , lowercase ϲ ), because of its crescent -like shape, and is still widely used in decorative typefaces in Greece, especially in religious and church contexts, as well as in some modern print editions of ...