When.com Web Search

  1. Ads

    related to: solving equations with complex numbers

Search results

  1. Results From The WOW.Com Content Network
  2. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted i, called the imaginary unit and satisfying the equation =; every complex number can be expressed in the form +, where a and b are real numbers.

  3. Equating coefficients - Wikipedia

    en.wikipedia.org/wiki/Equating_coefficients

    The method of equating coefficients is often used when dealing with complex numbers. For example, to divide the complex number a+bi by the complex number c+di, we postulate that the ratio equals the complex number e+fi, and we wish to find the values of the parameters e and f for which this is true. We write

  4. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    In fact, the same proof shows that Euler's formula is even valid for all complex numbers x. A point in the complex plane can be represented by a complex number written in cartesian coordinates. Euler's formula provides a means of conversion between cartesian coordinates and polar coordinates. The polar form simplifies the mathematics when used ...

  5. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    With more complicated equations in real or complex numbers, simple methods to solve equations can fail. Often, root-finding algorithms like the Newton–Raphson method can be used to find a numerical solution to an equation, which, for some applications, can be entirely sufficient to solve some problem.

  6. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    Thus solving a polynomial system over a number field is reduced to solving another system over the rational numbers. For example, if a system contains 2 {\displaystyle {\sqrt {2}}} , a system over the rational numbers is obtained by adding the equation r 2 2 – 2 = 0 and replacing 2 {\displaystyle {\sqrt {2}}} by r 2 in the other equations.

  7. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    When a cubic equation with real coefficients has three real roots, the formulas expressing these roots in terms of radicals involve complex numbers. Galois theory allows proving that when the three roots are real, and none is rational ( casus irreducibilis ), one cannot express the roots in terms of real radicals.

  8. Millennium Prize Problems - Wikipedia

    en.wikipedia.org/wiki/Millennium_Prize_Problems

    The Birch and Swinnerton-Dyer conjecture deals with certain types of equations: those defining elliptic curves over the rational numbers. The conjecture is that there is a simple way to tell whether such equations have a finite or infinite number of rational solutions.

  9. Galois theory - Wikipedia

    en.wikipedia.org/wiki/Galois_theory

    In this book, however, Cardano did not provide a "general formula" for the solution of a cubic equation, as he had neither complex numbers at his disposal, nor the algebraic notation to be able to describe a general cubic equation. With the benefit of modern notation and complex numbers, the formulae in this book do work in the general case ...