Search results
Results From The WOW.Com Content Network
A typical triple bond, for example in acetylene (HC≡CH), consists of one sigma bond and two pi bonds in two mutually perpendicular planes containing the bond axis. Two pi bonds are the maximum that can exist between a given pair of atoms. Quadruple bonds are extremely rare and can be formed only between transition metal atoms, and consist of ...
The increased reaction rate for the trimethylsilyl compound can be explained by silicon hyperconjugation as the βC-Si bond weakens the cyclobutane C-C bond by donating electrons. Scheme 2. benzocyclobutane ring opening. A biomimetic electrocyclic cascade reaction was discovered in relation to the isolation and synthesis of certain endiandric ...
In the water molecule for example, ab initio calculations show bonding character primarily in two molecular orbitals, each with electron density equally distributed among the two O-H bonds. The localized orbital corresponding to one O-H bond is the sum of these two delocalized orbitals, and the localized orbital for the other O-H bond is their ...
The bond order, or number of bonds, of a molecule can be determined by combining the number of electrons in bonding and antibonding molecular orbitals. A pair of electrons in a bonding orbital creates a bond, whereas a pair of electrons in an antibonding orbital negates a bond.
[2] [3] [4] The ring-flip of substituted cyclohexanes constitutes a common form of conformers. [5] The study of the energetics of bond rotation is referred to as conformational analysis. [6] In some cases, conformational analysis can be used to predict and explain product selectivity, mechanisms, and rates of reactions. [7]
The structure of pi bonds does not allow for rotation (at least not at 298 K), so the double bond and the triple bond which contain pi bonds are held due to this property. The sigma bond is not so restrictive, and the single bond is able to rotate using the sigma bond as the axis of rotation (Moore, Stanitski, and Jurs 396-397).
To summarize, we are assuming that: (1) the energy of an electron in an isolated C(2p z) orbital is =; (2) the energy of interaction between C(2p z) orbitals on adjacent carbons i and j (i.e., i and j are connected by a σ-bond) is =; (3) orbitals on carbons not joined in this way are assumed not to interact, so = for nonadjacent i and j; and ...
The two representations produce the same total electron density and are related by a unitary transformation of the occupied molecular orbitals; different localization procedures yield either of the two. Two equivalent orbitals h and h' can be constructed by taking linear combinations h = c 1 σ + c 2 π and h' = c 1 σ – c 2 π for an ...