Search results
Results From The WOW.Com Content Network
where is the number of terms in the progression and is the common difference between terms. The formula is essentially the same as the formula for the standard deviation of a discrete uniform distribution , interpreting the arithmetic progression as a set of equally probable outcomes.
A prime number is a natural number that has exactly two distinct natural number divisors: the number 1 and itself. To find all the prime numbers less than or equal to a given integer n by Eratosthenes' method: Create a list of consecutive integers from 2 through n: (2, 3, 4, ..., n). Initially, let p equal 2, the smallest prime number.
Størmer's theorem applies Pell equations to find pairs of consecutive smooth numbers, positive integers whose prime factors are all smaller than a given value. [ 25 ] [ 26 ] As part of this theory, Størmer also investigated divisibility relations among solutions to Pell's equation; in particular, he showed that each solution other than the ...
The sequence of numbers involved is sometimes referred to as the hailstone sequence, hailstone numbers or hailstone numerals (because the values are usually subject to multiple descents and ascents like hailstones in a cloud), [5] or as wondrous numbers. [6] Paul Erdős said about the Collatz conjecture: "Mathematics may not be ready for such ...
Michael Stifel published the following method in 1544. [3] [4] Consider the sequence of mixed numbers,,,, … with = + +.To calculate a Pythagorean triple, take any term of this sequence and convert it to an improper fraction (for mixed number , the corresponding improper fraction is ).
An integer sequence is computable if there exists an algorithm that, given n, calculates a n, for all n > 0. The set of computable integer sequences is countable.The set of all integer sequences is uncountable (with cardinality equal to that of the continuum), and so not all integer sequences are computable.
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.
In number theory, a polite number is a positive integer that can be written as the sum of two or more consecutive positive integers. A positive integer which is not polite is called impolite. [1] [2] The impolite numbers are exactly the powers of two, and the polite numbers are the natural numbers that are not powers of two.