Search results
Results From The WOW.Com Content Network
For example, the second-order equation y′′ = −y can be rewritten as two first-order equations: y′ = z and z′ = −y. In this section, we describe numerical methods for IVPs, and remark that boundary value problems (BVPs) require a different set of tools. In a BVP, one defines values, or components of the solution y at more than one ...
Exponential discounting is not dynamically inconsistent. A key aspect of the exponential discounting assumption is the property of dynamic consistency— preferences are constant over time. [ 1 ] In other words, preferences do not change with the passage of time unless new information is presented.
Complex replacement is used for solving differential equations when the non-homogeneous term is expressed in terms of a sinusoidal function or an exponential function, which can be converted into a complex exponential function differentiation and integration. Such complex exponential function is easier to manipulate than the original function.
The following two problems demonstrate the finite element method. P1 is a one-dimensional problem : {″ = (,), = =, where is given, is an unknown function of , and ″ is the second derivative of with respect to .
Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable is denoted or , with the two notations used interchangeab
In mathematics, the matrix exponential is a matrix function on square matrices analogous to the ordinary exponential function. It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group.
This differs from the (standard, or forward) Euler method in that the function is evaluated at the end point of the step, instead of the starting point. The backward Euler method is an implicit method , meaning that the formula for the backward Euler method has y n + 1 {\displaystyle y_{n+1}} on both sides, so when applying the backward Euler ...
The backward Euler method is an implicit method: the new approximation + appears on both sides of the equation, and thus the method needs to solve an algebraic equation for the unknown +. For non-stiff problems, this can be done with fixed-point iteration: