When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kernel regression - Wikipedia

    en.wikipedia.org/wiki/Kernel_regression

    MATLAB: A free MATLAB toolbox with implementation of kernel regression, kernel density estimation, kernel estimation of hazard function and many others is available on these pages (this toolbox is a part of the book [6]).

  3. Kernel (statistics) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(statistics)

    In nonparametric statistics, a kernel is a weighting function used in non-parametric estimation techniques. Kernels are used in kernel density estimation to estimate random variables' density functions, or in kernel regression to estimate the conditional expectation of a random variable.

  4. Multivariate kernel density estimation - Wikipedia

    en.wikipedia.org/wiki/Multivariate_kernel...

    kde2d.m A Matlab function for bivariate kernel density estimation. libagf A C++ library for multivariate, variable bandwidth kernel density estimation. akde.m A Matlab m-file for multivariate, variable bandwidth kernel density estimation. helit and pyqt_fit.kde Module in the PyQt-Fit package are Python libraries for multivariate kernel density ...

  5. Kernel principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Kernel_principal_component...

    Output after kernel PCA, with a Gaussian kernel. Note in particular that the first principal component is enough to distinguish the three different groups, which is impossible using only linear PCA, because linear PCA operates only in the given (in this case two-dimensional) space, in which these concentric point clouds are not linearly separable.

  6. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    Kernel functions have been introduced for sequence data, graphs, text, images, as well as vectors. Algorithms capable of operating with kernels include the kernel perceptron , support-vector machines (SVM), Gaussian processes , principal components analysis (PCA), canonical correlation analysis , ridge regression , spectral clustering , linear ...

  7. List of datasets in computer vision and image processing

    en.wikipedia.org/wiki/List_of_datasets_in...

    Regression 2019 [179] K. Mills & I. Tamblyn Quantum simulations of an electron in a two dimensional potential well Labelled images of raw input to a simulation of 2d Quantum mechanics Raw data (in HDF5 format) and output labels from quantum simulation 1.3 million images Labeled images Regression 2017 [180] K. Mills, M.A. Spanner, & I. Tamblyn

  8. Radial basis function kernel - Wikipedia

    en.wikipedia.org/wiki/Radial_basis_function_kernel

    Since the value of the RBF kernel decreases with distance and ranges between zero (in the infinite-distance limit) and one (when x = x'), it has a ready interpretation as a similarity measure. [2] The feature space of the kernel has an infinite number of dimensions; for =, its expansion using the multinomial theorem is: [3]

  9. Kernel smoother - Wikipedia

    en.wikipedia.org/wiki/Kernel_smoother

    Kernel average smoother example. The idea of the kernel average smoother is the following. For each data point X 0, choose a constant distance size λ (kernel radius, or window width for p = 1 dimension), and compute a weighted average for all data points that are closer than to X 0 (the closer to X 0 points get higher weights).