Ads
related to: sudoku with math problems
Search results
Results From The WOW.Com Content Network
The general problem of solving Sudoku puzzles on n 2 ×n 2 grids of n×n blocks is known to be NP-complete. [8] A puzzle can be expressed as a graph coloring problem. [9] The aim is to construct a 9-coloring of a particular graph, given a partial 9-coloring. The Sudoku graph has 81 vertices, one vertex for each cell.
A Sudoku may also be modelled as a constraint satisfaction problem. In his paper Sudoku as a Constraint Problem, [14] Helmut Simonis describes many reasoning algorithms based on constraints which can be applied to model and solve problems. Some constraint solvers include a method to model and solve Sudokus, and a program may require fewer than ...
In the mathematics of Sudoku, the Sudoku graph is an undirected graph whose vertices represent the cells of a (blank) Sudoku puzzle and whose edges represent pairs of cells that belong to the same row, column, or block of the puzzle. The problem of solving a Sudoku puzzle can be represented as precoloring extension on this graph.
Taking Sudoku Seriously: The Math Behind the World's Most Popular Pencil Puzzle is a book on the mathematics of Sudoku.It was written by Jason Rosenhouse and Laura Taalman, and published in 2011 by the Oxford University Press.
The general problem of solving Sudoku puzzles on n 2 ×n 2 grids of n×n blocks is known to be NP-complete. [26] Many Sudoku solving algorithms , such as brute force -backtracking and dancing links can solve most 9×9 puzzles efficiently, but combinatorial explosion occurs as n increases, creating practical limits to the properties of Sudokus ...
Try Sudoku. The logic puzzle has simple rules, and is easy to learn. Skip to main content. 24/7 Help. For premium support please call: 800-290-4726 more ways to reach us. Sign in ...
Solving Sudoku is an exact cover problem. More precisely, solving Sudoku is an exact hitting set problem, which is equivalent to an exact cover problem, when viewed as a problem to select possibilities such that each constraint set contains (i.e., is hit by) exactly one selected possibility.
The problem of determining if a partially filled square can be completed to form a Latin square is NP-complete. [22] The popular Sudoku puzzles are a special case of Latin squares; any solution to a Sudoku puzzle is a Latin square. Sudoku imposes the additional restriction that nine particular 3×3 adjacent subsquares must also contain the ...