When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Levenberg–Marquardt algorithm - Wikipedia

    en.wikipedia.org/wiki/Levenberg–Marquardt...

    In mathematics and computing, the Levenberg–Marquardt algorithm (LMA or just LM), also known as the damped least-squares (DLS) method, is used to solve non-linear least squares problems. These minimization problems arise especially in least squares curve fitting.

  3. Non-linear least squares - Wikipedia

    en.wikipedia.org/wiki/Non-linear_least_squares

    Non-linear least squares is the form of least squares analysis used to fit a set of m observations with a model that is non-linear in n unknown parameters (m ≥ n). It is used in some forms of nonlinear regression. The basis of the method is to approximate the model by a linear one and to refine the parameters by successive iterations.

  4. Nonlinear regression - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_regression

    In statistics, nonlinear regression is a form of regression analysis in which observational data are modeled by a function which is a nonlinear combination of the model parameters and depends on one or more independent variables. The data are fitted by a method of successive approximations (iterations).

  5. Nonlinear programming - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_programming

    an infeasible problem is one for which no set of values for the choice variables satisfies all the constraints. That is, the constraints are mutually contradictory, and no solution exists; the feasible set is the empty set. unbounded problem is a feasible problem for which the objective function can be made to be better than any given finite ...

  6. Non-negative least squares - Wikipedia

    en.wikipedia.org/wiki/Non-negative_least_squares

    Here x ≥ 0 means that each component of the vector x should be non-negative, and ‖·‖ 2 denotes the Euclidean norm. Non-negative least squares problems turn up as subproblems in matrix decomposition, e.g. in algorithms for PARAFAC [2] and non-negative matrix/tensor factorization. [3] [4] The latter can be considered a generalization of ...

  7. Nonlinear modelling - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_modelling

    The newer nonlinear modelling approaches include non-parametric methods, such as feedforward neural networks, kernel regression, multivariate splines, etc., which do not require a priori knowledge of the nonlinearities in the relations. Thus the nonlinear modelling can utilize production data or experimental results while taking into account ...

  8. Gauss–Newton algorithm - Wikipedia

    en.wikipedia.org/wiki/Gauss–Newton_algorithm

    Non-linear least squares problems arise, for instance, in non-linear regression, where parameters in a model are sought such that the model is in good agreement with available observations. The method is named after the mathematicians Carl Friedrich Gauss and Isaac Newton , and first appeared in Gauss's 1809 work Theoria motus corporum ...

  9. Nonlinear system - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_system

    In mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. [1] [2] Nonlinear problems are of interest to engineers, biologists, [3] [4] [5] physicists, [6] [7] mathematicians, and many other scientists since most systems are inherently nonlinear in nature. [8]