When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Four-bar linkage - Wikipedia

    en.wikipedia.org/wiki/Four-bar_linkage

    A rocker: can rotate through a limited range of angles which does not include 0° or 180° ... The time ratio (Q) of a four-bar mechanism is a measure of its quick ...

  3. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  4. Motion ratio - Wikipedia

    en.wikipedia.org/wiki/Motion_ratio

    The force in the spring is (roughly) the vertical force at the contact patch divided by the motion ratio, and the spring rate is the wheel rate divided by the motion ratio squared. I R = S p r i n g D i s p l a c e m e n t W h e e l D i s p l a c e m e n t . {\displaystyle IR={\frac {SpringDisplacement}{WheelDisplacement}}.}

  5. Slider-crank linkage - Wikipedia

    en.wikipedia.org/wiki/Slider-crank_linkage

    An in-line crank slider is oriented in a way in which the pivot point of the crank is coincident with the axis of the linear movement. The follower arm, which is the link that connects the crank arm to the slider, connects to a pin in the center of sliding object.

  6. Quick return mechanism - Wikipedia

    en.wikipedia.org/wiki/Quick_return_mechanism

    The ratio between the working stroke (engine) and the return stroke can be simplified through the manipulation of these concepts. [ 7 ] Despite similarities between quick return mechanisms, there are many different possibilities for the outline of all forces, speeds, lengths, motions, functions, and vectors in a mechanism.

  7. Nose cone design - Wikipedia

    en.wikipedia.org/wiki/Nose_cone_design

    General parameters used for constructing nose cone profiles. Given the problem of the aerodynamic design of the nose cone section of any vehicle or body meant to travel through a compressible fluid medium (such as a rocket or aircraft, missile, shell or bullet), an important problem is the determination of the nose cone geometrical shape for optimum performance.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Specific impulse - Wikipedia

    en.wikipedia.org/wiki/Specific_impulse

    In rocketry, a heavier engine with a higher specific impulse may not be as effective in gaining altitude, distance, or velocity as a lighter engine with a lower specific impulse, especially if the latter engine possesses a higher thrust-to-weight ratio. This is a significant reason for most rocket designs having multiple stages.