When.com Web Search

  1. Ads

    related to: table of primitive polynomials practice quiz

Search results

  1. Results From The WOW.Com Content Network
  2. Primitive polynomial (field theory) - Wikipedia

    en.wikipedia.org/wiki/Primitive_polynomial...

    Over GF(2), x + 1 is a primitive polynomial and all other primitive polynomials have an odd number of terms, since any polynomial mod 2 with an even number of terms is divisible by x + 1 (it has 1 as a root). An irreducible polynomial F(x) of degree m over GF(p), where p is prime, is a primitive polynomial if the smallest positive integer n ...

  3. Conway polynomial (finite fields) - Wikipedia

    en.wikipedia.org/wiki/Conway_polynomial_(finite...

    The Conway polynomial C p,n is defined as the lexicographically minimal monic primitive polynomial of degree n over F p that is compatible with C p,m for all m dividing n.This is an inductive definition on n: the base case is C p,1 (x) = x − α where α is the lexicographically minimal primitive element of F p.

  4. Primitive polynomial - Wikipedia

    en.wikipedia.org/wiki/Primitive_polynomial

    Primitive polynomial (field theory), a minimal polynomial of an extension of finite fields Primitive polynomial (ring theory) , a polynomial with coprime coefficients Topics referred to by the same term

  5. Primitive part and content - Wikipedia

    en.wikipedia.org/wiki/Primitive_part_and_content

    A polynomial is primitive if its content equals 1. Thus the primitive part of a polynomial is a primitive polynomial. Gauss's lemma for polynomials states that the product of primitive polynomials (with coefficients in the same unique factorization domain) also is primitive. This implies that the content and the primitive part of the product of ...

  6. Primitive element (finite field) - Wikipedia

    en.wikipedia.org/wiki/Primitive_element_(finite...

    In this case, a primitive element is also called a primitive root modulo q. For example, 2 is a primitive element of the field GF(3) and GF(5), but not of GF(7) since it generates the cyclic subgroup {2, 4, 1} of order 3; however, 3 is a primitive element of GF(7). The minimal polynomial of a primitive element is a primitive polynomial.

  7. Gauss's lemma (polynomials) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(polynomials)

    A polynomial P with coefficients in a UFD R is then said to be primitive if the only elements of R that divide all coefficients of P at once are the invertible elements of R; i.e., the gcd of the coefficients is one. Primitivity statement: If R is a UFD, then the set of primitive polynomials in R[X] is closed under

  8. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    The primitive pseudo-remainder sequence consists in taking for α the content of the numerator. Thus all the r i are primitive polynomials. The primitive pseudo-remainder sequence is the pseudo-remainder sequence, which generates the smallest coefficients.

  9. Finite field arithmetic - Wikipedia

    en.wikipedia.org/wiki/Finite_field_arithmetic

    The monic irreducible polynomial x 8 + x 4 + x 3 + x + 1 over GF(2) is not primitive. Let λ be a root of this polynomial (in the polynomial representation this would be x), that is, λ 8 + λ 4 + λ 3 + λ + 1 = 0. Now λ 51 = 1, so λ is not a primitive element of GF(2 8) and generates a multiplicative subgroup of order 51. [5]