Search results
Results From The WOW.Com Content Network
The Kaplan–Meier estimator, [1] [2] also known as the product limit estimator, is a non-parametric statistic used to estimate the survival function from lifetime data. In medical research, it is often used to measure the fraction of patients living for a certain amount of time after treatment.
Paul Meier (July 24, 1924 – August 7, 2011) [1] was a statistician who promoted the use of randomized trials in medicine. [2] [3]Meier is known for introducing, with Edward L. Kaplan, the Kaplan–Meier estimator, [4] [5] a method for measuring how many patients survive a medical treatment from one duration to another, taking into account that the sampled population changes over time.
This topic is called reliability theory, reliability analysis or reliability engineering in engineering, duration analysis or duration modelling in economics, and event history analysis in sociology. Survival analysis attempts to answer certain questions, such as what is the proportion of a population which will survive past a certain time?
The x-axis is time. The y-axis is the proportion of subjects surviving. The graphs show the probability that a subject will survive beyond time t. Four survival functions. For example, for survival function 1, the probability of surviving longer than t = 2 months is 0.37. That is, 37% of subjects survive more than 2 months. Survival function 1
There are several software suites available to estimate relative survival rates. Regression modelling can be performed using maximum likelihood estimation methods by using Stata or R. [ 4 ] [ 5 ] For example, the R package cmprsk may be used for competing risk analyses which utilize sub-distribution or 'Fine and Gray' regression methods.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Kaplan-Meier_curve&oldid=301564058"
The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]
The logrank test is based on the same assumptions as the Kaplan-Meier survival curve—namely, that censoring is unrelated to prognosis, the survival probabilities are the same for subjects recruited early and late in the study, and the events happened at the times specified. Deviations from these assumptions matter most if they are satisfied ...