Search results
Results From The WOW.Com Content Network
Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011.
A cyclic polygon with an even number of sides has all angles equal if and only if the alternate sides are equal (that is, sides 1, 3, 5, … are equal, and sides 2, 4, 6, … are equal). [11] A cyclic pentagon with rational sides and area is known as a Robbins pentagon. In all known cases, its diagonals also have rational lengths, though ...
Choose two points on the circle, and call them V and A. Draw line OV and extended past O so that it intersects the circle at point B which is diametrically opposite the point V. Draw an angle whose vertex is point V and whose sides pass through points A, B. Draw line OA. Angle ∠BOA is a central angle; call it θ.
Kissing circles. Given three mutually tangent circles (black), there are, in general, two possible answers (red) as to what radius a fourth tangent circle can have. In geometry, Descartes' theorem states that for every four kissing, or mutually tangent, circles, the radii of the circles satisfy a certain quadratic equation. By solving this ...
Mutually tangent circles. Given three mutually tangent circles (black), there are in general two other circles mutually tangent to them (red).The construction of the Apollonian gasket starts with three circles , , and (black in the figure), that are each tangent to the other two, but that do not have a single point of triple tangency.
Draw three circumcircles (Miquel's circles) to triangles AB´C´, A´BC´, and A´B´C. Miquel's theorem states that these circles intersect in a single point M, called the Miquel point. In addition, the three angles MA´B, MB´C and MC´A (green in the diagram) are all equal, as are the three supplementary angles MA´C, MB´A and MC´B. [2] [3]
The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.
The equation defining these circles as a locus can be generalized to define the Fermat–Apollonius circles of larger sets of weighted points. Each circle in the second family (the red circles in the figure) is associated with an angle θ , and is defined as the locus of points X such that the inscribed angle ∠ CXD equals θ , { X | C X ^ D ...