Search results
Results From The WOW.Com Content Network
The specific heat capacity of a substance, usually denoted by or , is the heat capacity of a sample of the substance, divided by the mass of the sample: [10] = =, where represents the amount of heat needed to uniformly raise the temperature of the sample by a small increment .
Heat capacity or thermal capacity is a physical property of matter, defined as the amount of heat to be supplied to an object to produce a unit change in its temperature. [1] The SI unit of heat capacity is joule per kelvin (J/K). Heat capacity is an extensive property.
where is the specific heat capacity (at constant pressure, in case of a gas) and is the density (mass per unit volume) of the material. This derivation assumes that the material has constant mass density and heat capacity through space as well as time.
For example, if 250 J of heat energy is added to a copper gear with a thermal mass of 38.46 J/°C, its temperature will rise by 6.50 °C. If the body consists of a homogeneous material with sufficiently known physical properties, the thermal mass is simply the mass of material present times the specific heat capacity of that material.
The molar heat capacity is the heat capacity per unit amount (SI unit: mole) of a pure substance, and the specific heat capacity, often called simply specific heat, is the heat capacity per unit mass of a material. Heat capacity is a physical property of a substance, which means that it depends on the state and properties of the substance under ...
The volumetric heat capacity of a material is the heat capacity of a sample of the substance divided by the volume of the sample. It is the amount of energy that must be added, in the form of heat, to one unit of volume of the material in order to cause an increase of one unit in its temperature.
Table of specific heat capacities at 25 °C (298 K) unless otherwise noted. [citation needed] Notable minima and maxima are shown in maroon. Substance Phase Isobaric mass heat capacity c P J⋅g −1 ⋅K −1 Molar heat capacity, C P,m and C V,m J⋅mol −1 ⋅K −1 Isobaric volumetric heat capacity C P,v J⋅cm −3 ⋅K −1 Isochoric ...
A specific property is the intensive property obtained by dividing an extensive property of a system by its mass. For example, heat capacity is an extensive property of a system. Dividing heat capacity, , by the mass of the system gives the specific heat capacity, , which is an intensive property. When the extensive property is represented by ...