Ad
related to: row major order java tutorial
Search results
Results From The WOW.Com Content Network
To use column-major order in a row-major environment, or vice versa, for whatever reason, one workaround is to assign non-conventional roles to the indexes (using the first index for the column and the second index for the row), and another is to bypass language syntax by explicitly computing positions in a one-dimensional array.
Illustration of row- and column-major order. Matrix representation is a method used by a computer language to store column-vector matrices of more than one dimension in memory. Fortran and C use different schemes for their native arrays. Fortran uses "Column Major" , in which all the elements for a given column are stored contiguously in memory.
The three important reasons for knowing whether a particular computer language compiler are row-major or column major: 1. most common is that the graphics adapter memory order has to be matched to main memory array order, or, at the least, performance suffers because the the data has to move just one cell (oe even pixel) at time if mismatched, otherwise large block moves can work.
A programmer (or a sophisticated compiler) may use this information to choose between row- or column-major layout for each array. For example, when computing the product A·B of two matrices, it would be best to have A stored in row-major order, and B in column-major order.
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
In linear algebra, linear transformations can be represented by matrices.If is a linear transformation mapping to and is a column vector with entries, then there exists an matrix , called the transformation matrix of , [1] such that: = Note that has rows and columns, whereas the transformation is from to .
What links here; Related changes; Upload file; Special pages; Permanent link; Page information; Cite this page; Get shortened URL; Download QR code
The vectorization is frequently used together with the Kronecker product to express matrix multiplication as a linear transformation on matrices. In particular, = for matrices A, B, and C of dimensions k×l, l×m, and m×n.