When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Internal and external angles - Wikipedia

    en.wikipedia.org/wiki/Internal_and_external_angles

    The sum of all the internal angles of a simple polygon is π(n−2) radians or 180(n–2) degrees, where n is the number of sides. The formula can be proved by using mathematical induction : starting with a triangle, for which the angle sum is 180°, then replacing one side with two sides connected at another vertex, and so on.

  3. Molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Molecular_geometry

    The bond angles in the table below are ideal angles from the simple VSEPR theory (pronounced "Vesper Theory") [citation needed], followed by the actual angle for the example given in the following column where this differs. For many cases, such as trigonal pyramidal and bent, the actual angle for the example differs from the ideal angle, and ...

  4. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    A triangle has three internal angles, each one bounded by a pair of adjacent edges; the sum of angles of a triangle always equals a straight angle (180 degrees or π radians). The triangle is a plane figure and its interior is a planar region.

  5. Dihedral angle - Wikipedia

    en.wikipedia.org/wiki/Dihedral_angle

    This dihedral angle, also called the face angle, is measured as the internal angle with respect to the polyhedron. An angle of 0° means the face normal vectors are antiparallel and the faces overlap each other, which implies that it is part of a degenerate polyhedron. An angle of 180° means the faces are parallel, as in a tiling. An angle ...

  6. Solid angle - Wikipedia

    en.wikipedia.org/wiki/Solid_angle

    The solid angle of a sphere measured from any point in its interior is 4 π sr. The solid angle subtended at the center of a cube by one of its faces is one-sixth of that, or 2 π /3 sr. The solid angle subtended at the corner of a cube (an octant) or spanned by a spherical octant is π /2 sr, one-eight of the solid angle of a sphere. [1]

  7. Sum of angles of a triangle - Wikipedia

    en.wikipedia.org/wiki/Sum_of_angles_of_a_triangle

    An easy formula for these properties is that in any three points in any shape, there is a triangle formed. Triangle ABC (example) has 3 points, and therefore, three angles; angle A, angle B, and angle C. Angle A, B, and C will always, when put together, will form 360 degrees. So, ∠A + ∠B + ∠C = 360°

  8. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    Fig. 1 – A triangle. The angles α (or A), β (or B), and γ (or C) are respectively opposite the sides a, b, and c.. In trigonometry, the law of cosines (also known as the cosine formula or cosine rule) relates the lengths of the sides of a triangle to the cosine of one of its angles.

  9. Hyperbolic triangle - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_triangle

    Hyperbolic triangles have some properties that are the opposite of the properties of triangles in spherical or elliptic geometry: The angle sum of a triangle is less than 180°. The area of a triangle is proportional to the deficit of its angle sum from 180°. Hyperbolic triangles also have some properties that are not found in other geometries: