Search results
Results From The WOW.Com Content Network
Gaussian optics is a technique in geometrical optics that describes the behaviour of light rays in optical systems by using the paraxial approximation, in which only rays which make small angles with the optical axis of the system are considered. [1] In this approximation, trigonometric functions can be expressed as linear functions of the angles.
The Gaussian function has a 1/e 2 diameter (2w as used in the text) about 1.7 times the FWHM.. At a position z along the beam (measured from the focus), the spot size parameter w is given by a hyperbolic relation: [1] = + (), where [1] = is called the Rayleigh range as further discussed below, and is the refractive index of the medium.
In optics, the complex beam parameter is a complex number that specifies the properties of a Gaussian beam at a particular point z along the axis of the beam. It is usually denoted by q . It can be calculated from the beam's vacuum wavelength λ 0 , the radius of curvature R of the phase front , the index of refraction n ( n =1 for air), and ...
In Gaussian optics, the cardinal points consist of three pairs of points located on the optical axis of a rotationally symmetric, focal, optical system.These are the focal points, the principal points, and the nodal points; there are two of each. [1]
Consequently, Gaussian functions are also associated with the vacuum state in quantum field theory. Gaussian beams are used in optical systems, microwave systems and lasers. In scale space representation, Gaussian functions are used as smoothing kernels for generating multi-scale representations in computer vision and image processing.
A Laguerre-Gaussian beam is an optical vortex with a line singularity along the beam axis. An optical singularity is a zero of an optical field. The phase in the field circulates around these points of zero intensity (giving rise to the name vortex). Vortices are points in 2D fields and lines in 3D fields (as they have codimension two).
Sign convention for Gaussian lens equation Parameter Meaning + Sign - Sign s o: The distance between an object and a lens. Real object Virtual object s i: The distance between an image and a lens. Real image Virtual image f: The focal length of a lens. Converging lens Diverging lens y o: The height of an object from the optical axis. Erect ...
The Gaussian theory, however, is only true so long as the angles made by all rays with the optical axis (the symmetrical axis of the system) are infinitely small, i.e., with infinitesimal objects, images and lenses; in practice these conditions may not be realized, and the images projected by uncorrected systems are, in general, ill-defined and ...