Search results
Results From The WOW.Com Content Network
In mathematics, the Regiomontanus's angle maximization problem, is a famous optimization problem [1] posed by the 15th-century German mathematician Johannes Müller [2] (also known as Regiomontanus). The problem is as follows: The two dots at eye level are possible locations of the viewer's eye. A painting hangs from a wall.
The condition J F ≠ 0 is related to the inverse function theorem in multivariable calculus. In fact for smooth functions (and so in particular for polynomials) a smooth local inverse function to F exists at every point where J F is non-zero. For example, the map x → x + x 3 has a smooth global inverse, but the inverse is not polynomial.
This problem per se is quite clumsy to solve in closed form. However, by employing a very simple conformal mapping, the inconvenient angle is mapped to one of precisely radians, meaning that the corner of two planes is transformed to a straight line. In this new domain, the problem (that of calculating the electric field impressed by a point ...
It is tempting to attempt to solve the inscribed square problem by proving that a special class of well-behaved curves always contains an inscribed square, and then to approximate an arbitrary curve by a sequence of well-behaved curves and infer that there still exists an inscribed square as a limit of squares inscribed in the curves of the sequence.
Because the "sweep" of the area under the involute is bounded by a tangent line (see diagram and derivation below) which is not the boundary (¯) between overlapping areas, the decomposition of the problem results in four computable areas: a half circle whose radius is the tether length (A 1); the area "swept" by the tether over an angle of 2 ...
A hyperbolic angle is an argument of a hyperbolic function just as the circular angle is the argument of a circular function. The comparison can be visualized as the size of the openings of a hyperbolic sector and a circular sector since the areas of these sectors correspond to the angle magnitudes in each case. [54]
Doubling the cube, also known as the Delian problem, is an ancient [a] [1]: 9 geometric problem. Given the edge of a cube , the problem requires the construction of the edge of a second cube whose volume is double that of the first.
The notion of "vertical thinking" as a method of solving problems was first introduced by Edward de Bono and can be traced back to his publication of Lateral Thinking: Creativity Step by Step in the year 1970. In the book, the concept of vertical thinking can be seen to have many parallels with that of "critical thinking". De Bono explains in ...