Search results
Results From The WOW.Com Content Network
The motion is periodic, repeating itself in a sinusoidal fashion with constant amplitude A. In addition to its amplitude, the motion of a simple harmonic oscillator is characterized by its period = /, the time for a single oscillation or its frequency = /, the number of cycles per unit time.
Simple harmonic motion can serve as a mathematical model for a variety of motions, but is typified by the oscillation of a mass on a spring when it is subject to the linear elastic restoring force given by Hooke's law. The motion is sinusoidal in time and demonstrates a single resonant frequency.
Harmonic motion can mean: the displacement of the particle executing oscillatory motion that can be expressed in terms of sine or cosine functions known as harmonic motion . The motion of a Harmonic oscillator (in physics), which can be: Simple harmonic motion; Complex harmonic motion; Keplers laws of planetary motion (in physics, known as the ...
To a first approximation, the motion in a normal vibration can be described as a kind of simple harmonic motion. In this approximation, the vibrational energy is a quadratic function (parabola) with respect to the atomic displacements and the first overtone has twice the frequency of the fundamental.
In mathematics, a number of concepts employ the word harmonic. The similarity of this terminology to that of music is not accidental: the equations of motion of vibrating strings, drums and columns of air are given by formulas involving Laplacians ; the solutions to which are given by eigenvalues corresponding to their modes of vibration.
The descriptor "harmonic" in the name harmonic function originates from a point on a taut string which is undergoing harmonic motion.The solution to the differential equation for this type of motion can be written in terms of sines and cosines, functions which are thus referred to as harmonics.
The most general motion of a linear system is a superposition of its normal modes. The modes are normal in the sense that they can move independently, that is to say that an excitation of one mode will never cause motion of a different mode. In mathematical terms, normal modes are orthogonal to each other.
and thus the Hamiltonian is a constant of motion, whose constant equals the total energy of the system: =. Examples of such systems are the undamped pendulum , the harmonic oscillator , and dynamical billiards .