Search results
Results From The WOW.Com Content Network
In physics, angular velocity (symbol ω or , the lowercase Greek letter omega), also known as angular frequency vector, [1] is a pseudovector representation of how the angular position or orientation of an object changes with time, i.e. how quickly an object rotates (spins or revolves) around an axis of rotation and how fast the axis itself changes direction.
A sphere rotating around an axis. Points farther from the axis move faster, satisfying ω = v / r.. In physics, angular frequency (symbol ω), also called angular speed and angular rate, is a scalar measure of the angle rate (the angle per unit time) or the temporal rate of change of the phase argument of a sinusoidal waveform or sine function (for example, in oscillations and waves).
Symbol Meaning SI unit of measure magnetic vector potential: tesla meter (T⋅m) area: square meter (m 2) amplitude: meter: atomic mass number: unitless acceleration: meter per second squared (m/s 2) magnetic flux density
The radian per second (symbol: rad⋅s −1 or rad/s) is the unit of angular velocity in the International System of Units (SI). The radian per second is also the SI unit of angular frequency (symbol ω, omega). The radian per second is defined as the angular frequency that results in the angular displacement increasing by one radian every second.
the symbol ϖ, a graphic variant of π, is sometimes construed as omega with a bar over it; see π; the unsaturated fats nomenclature in biochemistry (e.g. ω−3 fatty acids) the first uncountable ordinal (also written as Ω) the clique number (number of vertices in a maximum clique) of a graph in graph theory
Omega (US: / oʊ ˈ m eɪ ɡ ə,-ˈ m ɛ ɡ ə,-ˈ m iː ɡ ə /, UK: / ˈ oʊ m ɪ ɡ ə /; [1] uppercase Ω, lowercase ω; Ancient Greek ὦ, later ὦ μέγα, Modern Greek ωμέγα) is the twenty-fourth and last letter in the Greek alphabet.
The table usually lists only one name and symbol that is most commonly used. The final column lists some special properties that some of the quantities have, such as their scaling behavior (i.e. whether the quantity is intensive or extensive ), their transformation properties (i.e. whether the quantity is a scalar , vector , matrix or tensor ...
The absolute infinite (symbol: Ω), in context often called "absolute", is an extension of the idea of infinity proposed by mathematician Georg Cantor.It can be thought of as a number that is bigger than any other conceivable or inconceivable quantity, either finite or transfinite.