Search results
Results From The WOW.Com Content Network
The low solubility of silver iodide and lead iodide reflects the covalent character of these metal iodides. A test for the presence of iodide ions is the formation of yellow precipitates of these compounds upon treatment of a solution of silver nitrate or lead(II) nitrate. [2] Aqueous solutions of iodide salts dissolve iodine better than pure ...
These methods work best when the iodide product is stable to hydrolysis; otherwise, the possibilities include high-temperature oxidative iodination of the element with iodine or hydrogen iodide, high-temperature iodination of a metal oxide or other halide by iodine, a volatile metal halide, carbon tetraiodide, or an organic iodide. For example ...
Alternatively, the Meyer-Hartmann reaction applies: a silver alkoxide reacts with elemental iodine to give the hypoiodite and silver iodide. They are unstable to visible light, cleaving into alkoxyl and iodine radicals. [12] The synthesis of organyl periodyl derivatives (λ 7-iodanes) has been attempted since the early 20th century. [13]
This is an accepted version of this page This is the latest accepted revision, reviewed on 31 December 2024. This article is about the chemical element. For other uses, see Iodine (disambiguation). Chemical element with atomic number 53 (I) Iodine, 53 I Iodine Pronunciation / ˈ aɪ ə d aɪ n, - d ɪ n, - d iː n / (EYE -ə-dyne, -din, -deen) Appearance lustrous metallic gray solid ...
In this protocol, iodide ion is generated by the following slow reaction between the iodate and bisulfite: IO − 3 + 3 HSO − 3 → I − + 3 HSO − 4. This first step is the rate determining step. Next, the iodate in excess will oxidize the iodide generated above to form iodine: IO − 3 + 5 I − + 6 H + → 3 I 2 + 3 H 2 O
Gold iodide is the chemical compound with the formula Au I 3. Although Au 2 I 6 is predicted to be stable, [1] gold(III) iodide remains an example of a nonexistent or unstable compound. [2] Attempts to isolate pure samples result in the formation of gold(I) iodide and iodine: AuI 3 → AuI + I 2 [citation needed]
Hydrogen iodide (HI) is a diatomic molecule and hydrogen halide. Aqueous solutions of HI are known as hydroiodic acid or hydriodic acid, a strong acid . Hydrogen iodide and hydroiodic acid are, however, different in that the former is a gas under standard conditions, whereas the other is an aqueous solution of the gas .
3 is soluble, the lead iodide PbI 2 is nearly insoluble at room temperature, and thus precipitates out. [17] Other soluble compounds containing lead(II) and iodide can be used instead, for example lead(II) acetate [12] and sodium iodide. The compound can also be synthesized by reacting iodine vapor with molten lead between 500 and 700 °C. [18]