When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Autoregressive moving-average model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_moving...

    The CRAN task view on Time Series contains links to most of these. Mathematica has a complete library of time series functions including ARMA. [11] MATLAB includes functions such as arma, ar and arx to estimate autoregressive, exogenous autoregressive and ARMAX models. See System Identification Toolbox and Econometrics Toolbox for details.

  3. Autoregressive model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_model

    Together with the moving-average (MA) model, it is a special case and key component of the more general autoregressive–moving-average (ARMA) and autoregressive integrated moving average (ARIMA) models of time series, which have a more complicated stochastic structure; it is also a special case of the vector autoregressive model (VAR), which ...

  4. SETAR (model) - Wikipedia

    en.wikipedia.org/wiki/SETAR_(model)

    SETAR models were introduced by Howell Tong in 1977 and more fully developed in the seminal paper (Tong and Lim, 1980). They can be thought of in terms of extension of autoregressive models, allowing for changes in the model parameters according to the value of weakly exogenous threshold variable z t, assumed to be past values of y, e.g. y t-d, where d is the delay parameter, triggering the ...

  5. Category:Time series models - Wikipedia

    en.wikipedia.org/wiki/Category:Time_series_models

    Random article; About Wikipedia; Contact us; ... Download as PDF; Printable version; In other projects ... Help. Pages in category "Time series models" The following ...

  6. Autoregressive integrated moving average - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_integrated...

    The CRAN task view on Time Series is the reference with many more links. The "forecast" package in R can automatically select an ARIMA model for a given time series with the auto.arima() function [that can often give questionable results] and can also simulate seasonal and non-seasonal ARIMA models with its simulate.Arima() function. [16]

  7. Autoregressive conditional heteroskedasticity - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_conditional...

    ARCH models are commonly employed in modeling financial time series that exhibit time-varying volatility and volatility clustering, i.e. periods of swings interspersed with periods of relative calm (this is, when the time series exhibits heteroskedasticity).

  8. These models are useful in modeling time series with long memory—that is, in which deviations from the long-run mean decay more slowly than an exponential decay. The acronyms "ARFIMA" or "FARIMA" are often used, although it is also conventional to simply extend the "ARIMA( p , d , q )" notation for models, by simply allowing the order of ...

  9. STAR model - Wikipedia

    en.wikipedia.org/wiki/STAR_model

    Given a time series of data x t, the STAR model is a tool for understanding and, perhaps, predicting future values in this series, assuming that the behaviour of the series changes depending on the value of the transition variable. The transition might depend on the past values of the x series (similar to the SETAR models), or exogenous variables.

  1. Related searches automatic timer switch on random time series model examples pdf images

    automatic timer switch on random time series model examples pdf images free