Search results
Results From The WOW.Com Content Network
Critical fission reactors are the most common type of nuclear reactor. In a critical fission reactor, neutrons produced by fission of fuel atoms are used to induce yet more fissions, to sustain a controllable amount of energy release. Devices that produce engineered but non-self-sustaining fission reactions are subcritical fission reactors.
Some reactor poisons are deliberately inserted into fission reactor cores to control the reaction; boron or cadmium control rods are the best example. Many reactor poisons are produced by the fission process itself, and buildup of neutron-absorbing fission products affects both the fuel economics and the controllability of nuclear reactors.
A fission fragment reactor is a nuclear reactor that generates electricity by decelerating an ion beam of fission byproducts instead of using nuclear reactions to generate heat. By doing so, it bypasses the Carnot cycle and can achieve efficiencies of up to 90% instead of 40–45% attainable by efficient turbine-driven thermal reactors.
The reactor in Shidao Bay, China is the world’s first gas-cooled nuclear power plant built for commercial demonstration. It is cooled by helium and can reach high temperatures of up to 750 ...
The fuel for energy purposes, such as in a nuclear fission reactor, is very different, usually consisting of a low-enriched oxide material (e.g. uranium dioxide, UO 2). There are two primary isotopes used for fission reactions inside of nuclear reactors. The first and most common is uranium-235.
Reactions with neutrons are important in nuclear reactors and nuclear weapons. While the best-known neutron reactions are neutron scattering, neutron capture, and nuclear fission, for some light nuclei (especially odd-odd nuclei) the most probable reaction with a thermal neutron is a transfer reaction:
1943 Reactor diagram using boron control rods. Control rods are inserted into the core of a nuclear reactor and adjusted in order to control the rate of the nuclear chain reaction and, thereby, the thermal power output of the reactor, the rate of steam production, and the electrical power output of the power station.
Speaking at the Atlantic Council on Dec. 6, the head of the second biggest U.S. energy giant by market cap noted that Chevron has previously invested in companies developing small modular fission ...