Search results
Results From The WOW.Com Content Network
Structure of the human uncoupling protein UCP1. An uncoupling protein (UCP) is a mitochondrial inner membrane protein that is a regulated proton channel or transporter.An uncoupling protein is thus capable of dissipating the proton gradient generated by NADH-powered pumping of protons from the mitochondrial matrix to the mitochondrial intermembrane space.
An uncoupler or uncoupling agent is a molecule that disrupts oxidative phosphorylation in prokaryotes and mitochondria or photophosphorylation in chloroplasts and cyanobacteria by dissociating the reactions of ATP synthesis from the electron transport chain.
Although it was originally thought to play a role in non-shivering thermogenesis, obesity, diabetes and atherosclerosis, it now appears that the main function of UCP2 is the control of mitochondria-derived reactive oxygen species. [8] Chromosomal order is 5'-UCP3-UCP2-3'. [9] Mitochondrial Uncoupling Protein 2
Mitochondrial uncoupling protein 3 (UCP3) is a members of the larger family of mitochondrial anion carrier proteins (MACP). UCPs facilitate the transfer of anions from the inner to the outer mitochondrial membrane and transfer of protons from the outer to the inner mitochondrial membrane, reducing the mitochondrial membrane potential in mammalian cells.
To do this, it must release the absorbed energy. This can happen in various ways. The extra energy can be converted into molecular motion and lost as heat, or re-emitted by the electron as light (fluorescence). The energy, but not the electron itself, may be passed onto another molecule; this is called resonance energy transfer.
In mitochondria, energy released by the electron transport chain is used to move protons from the mitochondrial matrix (N side) to the intermembrane space (P side). Moving the protons out of the mitochondrion creates a lower concentration of positively charged protons inside it, resulting in excess negative charge on the inside of the membrane.
Thermogenin (called uncoupling protein by its discoverers and now known as uncoupling protein 1, or UCP1) [5] is a mitochondrial carrier protein found in brown adipose tissue (BAT). It is used to generate heat by non-shivering thermogenesis , and makes a quantitatively important contribution to countering heat loss in babies which would ...
The following is a breakdown of the energetics of the photosynthesis process from Photosynthesis by Hall and Rao: [6]. Starting with the solar spectrum falling on a leaf, 47% lost due to photons outside the 400–700 nm active range (chlorophyll uses photons between 400 and 700 nm, extracting the energy of one 700 nm photon from each one)