Ads
related to: inductive reasoning vs deductive reasoning geometry
Search results
Results From The WOW.Com Content Network
Inductive reasoning is any of various methods of reasoning in which broad generalizations or principles are derived from a body of observations. [1] [2] This article is concerned with the inductive reasoning other than deductive reasoning (such as mathematical induction), where the conclusion of a deductive argument is certain given the premises are correct; in contrast, the truth of the ...
Despite its name, mathematical induction differs fundamentally from inductive reasoning as used in philosophy, in which the examination of many cases results in a probable conclusion. The mathematical method examines infinitely many cases to prove a general statement, but it does so by a finite chain of deductive reasoning involving the ...
This theory of deductive reasoning – also known as term logic – was developed by Aristotle, but was superseded by propositional (sentential) logic and predicate logic. [citation needed] Deductive reasoning can be contrasted with inductive reasoning, in regards to validity and soundness. In cases of inductive reasoning, even though the ...
Deductive reasoning; Inductive reasoning; Validity (logic) Cogency (disambiguation) This page was last edited on 21 May 2020, at 12:06 (UTC). Text is available under ...
Other forms of reasoning are sometimes also taken to be part of logic, such as inductive reasoning and abductive reasoning, which are forms of reasoning that are not purely deductive, but include material inference. Similarly, it is important to distinguish deductive validity and inductive validity (called "strength").
A mathematical proof is a deductive argument for a mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems ; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms ...
Inferences are steps in logical reasoning, moving from premises to logical consequences; etymologically, the word infer means to "carry forward". Inference is theoretically traditionally divided into deduction and induction, a distinction that in Europe dates at least to Aristotle (300s BCE).
While deductive logic allows one to arrive at a conclusion with certainty, inductive logic can only provide a conclusion that is probably true. [non-primary source needed] It is mistaken to frame the difference between deductive and inductive logic as one between general to specific reasoning and specific to general reasoning. This is a common ...