When.com Web Search

  1. Ad

    related to: full rank matrix properties of matter class

Search results

  1. Results From The WOW.Com Content Network
  2. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    A matrix is said to have full rank if its rank equals the largest possible for a matrix of the same dimensions, which is the lesser of the number of rows and columns. A matrix is said to be rank-deficient if it does not have full rank. The rank deficiency of a matrix is the difference between the lesser of the number of rows and columns, and ...

  3. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    For the cases where ⁠ ⁠ has full row or column rank, and the inverse of the correlation matrix (⁠ ⁠ for ⁠ ⁠ with full row rank or ⁠ ⁠ for full column rank) is already known, the pseudoinverse for matrices related to ⁠ ⁠ can be computed by applying the Sherman–Morrison–Woodbury formula to update the inverse of the ...

  4. Rank factorization - Wikipedia

    en.wikipedia.org/wiki/Rank_factorization

    Every finite-dimensional matrix has a rank decomposition: Let be an matrix whose column rank is . Therefore, there are r {\textstyle r} linearly independent columns in A {\textstyle A} ; equivalently, the dimension of the column space of A {\textstyle A} is r {\textstyle r} .

  5. Matrix equivalence - Wikipedia

    en.wikipedia.org/wiki/Matrix_equivalence

    The rank property yields an intuitive canonical form for matrices of the equivalence class of rank as (), where the number of s on the diagonal is equal to .This is a special case of the Smith normal form, which generalizes this concept on vector spaces to free modules over principal ideal domains.

  6. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.

  7. Finite-rank operator - Wikipedia

    en.wikipedia.org/wiki/Finite-rank_operator

    Finite-rank operators are matrices (of finite size) transplanted to the infinite dimensional setting. As such, these operators may be described via linear algebra techniques. From linear algebra, we know that a rectangular matrix, with complex entries, M ∈ C n × m {\displaystyle M\in \mathbb {C} ^{n\times m}} has rank 1 {\displaystyle 1} if ...

  8. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    After the algorithm has converged, the singular value decomposition = is recovered as follows: the matrix is the accumulation of Jacobi rotation matrices, the matrix is given by normalising the columns of the transformed matrix , and the singular values are given as the norms of the columns of the transformed matrix .

  9. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    In linear algebra, an invertible matrix is a square matrix which has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by an inverse to undo the operation. An invertible matrix multiplied by its inverse yields the identity matrix. Invertible matrices are the same size as their ...