Search results
Results From The WOW.Com Content Network
The respiratory quotient (RQ or respiratory coefficient) is a dimensionless number used in calculations of basal metabolic rate (BMR) when estimated from carbon dioxide production. It is calculated from the ratio of carbon dioxide produced by the body to oxygen consumed by the body, when the body is in a steady state.
The respiration rate is a parameter which is used in ecological and agronomical modeling. In theoretical production ecology and aquaculture , it typically refers to respiration per unit of time (usually loss of biomass by respiration per unit of weight), also referred to as relative respiration rate . [ 1 ]
An evaluation of respiratory rate for the differentiation of the severity of illness in babies under 6 months found it not to be very useful. Approximately half of the babies had a respiratory rate above 50 breaths per minute, thereby questioning the value of having a "cut-off" at 50 breaths per minute as the indicator of serious respiratory ...
A RSBI score of less than 65 [3] indicating a relatively low respiratory rate compared to tidal volume is generally considered as an indication of weaning readiness. A patient with a rapid shallow breathing index (RSBI) of less than 105 has an approximately 80% chance of being successfully extubated, whereas an RSBI of greater than 105 virtually guarantees weaning failure. [4]
The CO 2 compensation point (Γ) is the CO 2 concentration at which the rate of photosynthesis exactly matches the rate of respiration. There is a significant difference in Γ between C 3 plants and C 4 plants: on land, the typical value for Γ in a C 3 plant ranges from 40–100 μmol/mol, while in C 4 plants the values are lower at 3–10 μmol/mol. Plants with a weaker CCM, such as C2 ...
Calculating rates of VO 2 and/or VCO 2 requires knowledge of the flow rates into and out of the chamber, plus fractional concentrations of the gas mixtures into and out of the animal chamber. In general, metabolic rates are calculated from steady-state conditions (i.e., animal's metabolic rate is assumed to be constant [9] [10]).
The formula can also be written for units of calories per day where VO 2 is oxygen consumption expressed in millilitres per minute and VCO 2 is the rate of carbon dioxide production in millilitres per minute. Another source gives [2] Energy (kcal/min) = (respiration in L/min times change in percentage oxygen) / 20. This corresponds to:
During normal aerobic respiration the ratio would be somewhere between these values, as the TCA cycle produces both NADH and ubiquinol. The resulting P/O ratio would be the ratio of H/O and H/P; which is 10/3.67 or 2.73 for NADH-linked respiration, and 6/3.67 or 1.64 for UQH2-linked respiration, with actual values being somewhere between.