When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rate of convergence - Wikipedia

    en.wikipedia.org/wiki/Rate_of_convergence

    Toggle Asymptotic rates of convergence for iterative methods subsection. 1.1 Definitions. 1.1.1 R-convergence. 1.2 Examples. ... Exponential response formula;

  3. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    This convergence result is widely applied to prove the convergence of other series as well, whenever those series's terms can be bounded from above by a suitable geometric series; that proof strategy is the basis for the ratio test and root test for the convergence of infinite series. [11]

  4. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    The rate of convergence is distinguished from the number of iterations required to reach a given accuracy. For example, the function f ( x ) = x 20 − 1 has a root at 1. Since f ′(1) ≠ 0 and f is smooth, it is known that any Newton iteration convergent to 1 will converge quadratically.

  5. Halley's method - Wikipedia

    en.wikipedia.org/wiki/Halley's_method

    Halley's method is a numerical algorithm for solving the nonlinear equation f(x) = 0.In this case, the function f has to be a function of one real variable. The method consists of a sequence of iterations:

  6. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_methods

    Rate of convergence; ... , the rate at which changes, is a function of and ... It follows from the formula that r is the quotient of two polynomials of ...

  7. Richardson extrapolation - Wikipedia

    en.wikipedia.org/wiki/Richardson_extrapolation

    In numerical analysis, Richardson extrapolation is a sequence acceleration method used to improve the rate of convergence of a sequence of estimates of some value = (). In essence, given the value of A ( h ) {\displaystyle A(h)} for several values of h {\displaystyle h} , we can estimate A ∗ {\displaystyle A^{\ast }} by extrapolating the ...

  8. Order of accuracy - Wikipedia

    en.wikipedia.org/wiki/Order_of_accuracy

    In numerical analysis, order of accuracy quantifies the rate of convergence of a numerical approximation of a differential equation to the exact solution. Consider , the exact solution to a differential equation in an appropriate normed space (, | | | |).

  9. Series acceleration - Wikipedia

    en.wikipedia.org/wiki/Series_acceleration

    Two classical techniques for series acceleration are Euler's transformation of series [1] and Kummer's transformation of series. [2] A variety of much more rapidly convergent and special-case tools have been developed in the 20th century, including Richardson extrapolation, introduced by Lewis Fry Richardson in the early 20th century but also known and used by Katahiro Takebe in 1722; the ...