When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  3. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    Equation [3] involves the average velocity ⁠ v + v 0 / 2 ⁠. Intuitively, the velocity increases linearly, so the average velocity multiplied by time is the distance traveled while increasing the velocity from v 0 to v, as can be illustrated graphically by plotting velocity against time as a straight line graph. Algebraically, it follows ...

  4. Velocity - Wikipedia

    en.wikipedia.org/wiki/Velocity

    Velocity is the speed in combination with the direction of motion of an object. Velocity is a fundamental concept in kinematics, the branch of classical mechanics that describes the motion of bodies. Velocity is a physical vector quantity: both magnitude and direction are needed to define it.

  5. Characteristic velocity - Wikipedia

    en.wikipedia.org/wiki/Characteristic_velocity

    Characteristic velocity or , or C-star is a measure of the combustion performance of a rocket engine independent of nozzle performance, and is used to compare different propellants and propulsion systems. c* should not be confused with c, which is the effective exhaust velocity related to the specific impulse by: =. Specific impulse and ...

  6. Relativistic rocket - Wikipedia

    en.wikipedia.org/wiki/Relativistic_rocket

    In the relativistic case, the equation is still valid if is the acceleration in the rocket's reference frame and is the rocket's proper time because at velocity 0 the relationship between force and acceleration is the same as in the classical case. Solving this equation for the ratio of initial mass to final mass gives

  7. Projectile motion - Wikipedia

    en.wikipedia.org/wiki/Projectile_motion

    This is the equation of a parabola, so the path is parabolic. The axis of the parabola is vertical. If the projectile's position (x,y) and launch angle (θ or α) are known, the initial velocity can be found solving for v 0 in the afore-mentioned parabolic equation:

  8. Delta-v - Wikipedia

    en.wikipedia.org/wiki/Delta-v

    Delta-v (also known as "change in velocity"), symbolized as and pronounced /dɛltə viː/, as used in spacecraft flight dynamics, is a measure of the impulse per unit of spacecraft mass that is needed to perform a maneuver such as launching from or landing on a planet or moon, or an in-space orbital maneuver.

  9. Relative velocity - Wikipedia

    en.wikipedia.org/wiki/Relative_velocity

    Relative velocities between two particles in classical mechanics. The figure shows two objects A and B moving at constant velocity. The equations of motion are: = +, = +, where the subscript i refers to the initial displacement (at time t equal to zero).