When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Null hypothesis - Wikipedia

    en.wikipedia.org/wiki/Null_hypothesis

    A possible null hypothesis is that the mean male score is the same as the mean female score: H 0: μ 1 = μ 2. where H 0 = the null hypothesis, μ 1 = the mean of population 1, and μ 2 = the mean of population 2. A stronger null hypothesis is that the two samples have equal variances and shapes of their respective distributions.

  3. Type I and type II errors - Wikipedia

    en.wikipedia.org/wiki/Type_I_and_type_II_errors

    This is why the hypothesis under test is often called the null hypothesis (most likely, coined by Fisher (1935, p. 19)), because it is this hypothesis that is to be either nullified or not nullified by the test. When the null hypothesis is nullified, it is possible to conclude that data support the "alternative hypothesis" (which is the ...

  4. p-value - Wikipedia

    en.wikipedia.org/wiki/P-value

    In null-hypothesis significance testing, the p-value [note 1] is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. [2] [3] A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypothesis.

  5. Sign test - Wikipedia

    en.wikipedia.org/wiki/Sign_test

    Let p = Pr(X > Y), and then test the null hypothesis H 0: p = 0.50. In other words, the null hypothesis states that given a random pair of measurements (x i, y i), then x i and y i are equally likely to be larger than the other. To test the null hypothesis, independent pairs of sample data are collected from the populations {(x 1, y 1), (x 2, y ...

  6. Null distribution - Wikipedia

    en.wikipedia.org/wiki/Null_distribution

    Null distribution is a tool scientists often use when conducting experiments. The null distribution is the distribution of two sets of data under a null hypothesis. If the results of the two sets of data are not outside the parameters of the expected results, then the null hypothesis is said to be true. Null and alternative distribution

  7. Lady tasting tea - Wikipedia

    en.wikipedia.org/wiki/Lady_tasting_tea

    The null hypothesis is that the subject has no ability to distinguish the teas. In Fisher's approach, there was no alternative hypothesis, [2] unlike in the Neyman–Pearson approach. The test statistic is a simple count of the number of successful attempts to select the four cups prepared by a given method.

  8. Shapiro–Wilk test - Wikipedia

    en.wikipedia.org/wiki/Shapiro–Wilk_test

    The Shapiro–Wilk test tests the null hypothesis that a sample x 1, ..., x n came from a normally distributed population. The test statistic is = (= ()) = (¯), where with parentheses enclosing the subscript index i is the ith order statistic, i.e., the ith-smallest number in the sample (not to be confused with ).

  9. Statistical hypothesis test - Wikipedia

    en.wikipedia.org/wiki/Statistical_hypothesis_test

    Here the null hypothesis is by default that two things are unrelated (e.g. scar formation and death rates from smallpox). [7] The null hypothesis in this case is no longer predicted by theory or conventional wisdom, but is instead the principle of indifference that led Fisher and others to dismiss the use of "inverse probabilities". [8]