When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fiber (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Fiber_(mathematics)

    A function between topological spaces is called monotone if every fiber is a connected subspace of its domain. A function f : R → R {\displaystyle f:\mathbb {R} \to \mathbb {R} } is monotone in this topological sense if and only if it is non-increasing or non-decreasing , which is the usual meaning of " monotone function " in real analysis .

  3. Fiber product of schemes - Wikipedia

    en.wikipedia.org/wiki/Fiber_product_of_schemes

    Then there is a morphism Spec(k(y)) → Y with image y, where k(y) is the residue field of y. The fiber of f over y is defined as the fiber product X × Y Spec(k(y)); this is a scheme over the field k(y). [3] This concept helps to justify the rough idea of a morphism of schemes X → Y as a family of schemes parametrized by Y.

  4. Fibration - Wikipedia

    en.wikipedia.org/wiki/Fibration

    A mapping : between total spaces of two fibrations : and : with the same base space is a fibration homomorphism if the following diagram commutes: . The mapping is a fiber homotopy equivalence if in addition a fibration homomorphism : exists, such that the mappings and are homotopic, by fibration homomorphisms, to the identities and . [2]: 405-406

  5. Bundle map - Wikipedia

    en.wikipedia.org/wiki/Bundle_map

    In mathematics, a bundle map (or bundle morphism) is a morphism in the category of fiber bundles. There are two distinct, but closely related, notions of bundle map, depending on whether the fiber bundles in question have a common base space. There are also several variations on the basic theme, depending on precisely which category of fiber ...

  6. Affine bundle - Wikipedia

    en.wikipedia.org/wiki/Affine_bundle

    An affine bundle is a fiber bundle with a general affine structure group (,) of affine transformations of its typical fiber of dimension . This structure group always is reducible to a general linear group G L ( m , R ) {\displaystyle GL(m,\mathbb {R} )} , i.e., an affine bundle admits an atlas with linear transition functions.

  7. Scheme (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Scheme_(mathematics)

    In mathematics, specifically algebraic geometry, a scheme is a structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations x = 0 and x 2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers).

  8. Pullback (category theory) - Wikipedia

    en.wikipedia.org/wiki/Pullback_(category_theory)

    Another example of a pullback comes from the theory of fiber bundles: given a bundle map π : E → B and a continuous map f : X → B, the pullback (formed in the category of topological spaces with continuous maps) X × B E is a fiber bundle over X called the pullback bundle. The associated commutative diagram is a morphism of fiber bundles.

  9. Degeneration (algebraic geometry) - Wikipedia

    en.wikipedia.org/wiki/Degeneration_(algebraic...

    In general, given a pointed scheme (S, 0) and a scheme X, a morphism of schemes π: X ' → S is called the deformation of a scheme X if it is flat and the fiber of it over the distinguished point 0 of S is X. Thus, the above notion is a special case when S = Spec D and there is some choice of embedding.