When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bézier curve - Wikipedia

    en.wikipedia.org/wiki/Bézier_curve

    E is either point on the curve with a tangent at 45° to CD (dashed green). If G is the intersection of this tangent and the axis, the line passing through G and perpendicular to CD is the directrix (solid green). The focus (F) is at the intersection of the axis and a line passing through E and perpendicular to CD (dotted yellow).

  3. Bézier surface - Wikipedia

    en.wikipedia.org/wiki/Bézier_surface

    The points in the patch corresponding to the corners of the deformed unit square coincide with four of the control points. However, a Bézier surface does not generally pass through its other control points. Generally, the most common use of Bézier surfaces is as nets of bicubic patches (where m = n = 3). The geometry of a single bicubic patch ...

  4. Homogeneous coordinates - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_coordinates

    Rational Bézier curve – polynomial curve defined in homogeneous coordinates (blue) and its projection on plane – rational curve (red) In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work Der barycentrische Calcul, [1] [2] [3] are a system of coordinates used in projective geometry, just as Cartesian coordinates are used ...

  5. Ruled surface - Wikipedia

    en.wikipedia.org/wiki/Ruled_surface

    In geometry, a surface S in 3-dimensional Euclidean space is ruled (also called a scroll) if through every point of S, there is a straight line that lies on S. Examples include the plane , the lateral surface of a cylinder or cone , a conical surface with elliptical directrix , the right conoid , the helicoid , and the tangent developable of a ...

  6. Composite Bézier curve - Wikipedia

    en.wikipedia.org/wiki/Composite_Bézier_curve

    Béziergon – The red béziergon passes through the blue vertices, the green points are control points that determine the shape of the connecting Bézier curves. In geometric modelling and in computer graphics, a composite Bézier curve or Bézier spline is a spline made out of Bézier curves that is at least continuous. In other words, a ...

  7. De Boor's algorithm - Wikipedia

    en.wikipedia.org/wiki/De_Boor's_algorithm

    In the mathematical subfield of numerical analysis, de Boor's algorithm [1] is a polynomial-time and numerically stable algorithm for evaluating spline curves in B-spline form. It is a generalization of de Casteljau's algorithm for Bézier curves. The algorithm was devised by German-American mathematician Carl R. de Boor. Simplified ...

  8. De Casteljau's algorithm - Wikipedia

    en.wikipedia.org/wiki/De_Casteljau's_algorithm

    The following JavaScript function applies De Casteljau's algorithm to an array of control points or poles as originally named by De Casteljau to reduce them one by one until reaching a point in the curve for a given t between 0 for the first point of the curve and 1 for the last one

  9. Cubic Hermite spline - Wikipedia

    en.wikipedia.org/wiki/Cubic_Hermite_spline

    The curve is named after Edwin Catmull and Raphael Rom. The principal advantage of this technique is that the points along the original set of points also make up the control points for the spline curve. [7] Two additional points are required on either end of the curve. The uniform Catmull–Rom implementation can produce loops and self ...