Search results
Results From The WOW.Com Content Network
In statistics and image processing, to smooth a data set is to create an approximating function that attempts to capture important patterns in the data, while leaving out noise or other fine-scale structures/rapid phenomena. In smoothing, the data points of a signal are modified so individual points higher than the adjacent points (presumably ...
The first step of the second pass is to create an array of size n, which is the maximum iteration count: NumIterationsPerPixel. Next, one must iterate over the array of pixel-iteration count pairs, IterationCounts[][], and retrieve each pixel's saved iteration count, i, via e.g. i = IterationCounts[x][y].
The "moving average filter" is a trivial example of a Savitzky–Golay filter that is commonly used with time series data to smooth out short-term fluctuations and highlight longer-term trends or cycles. Each subset of the data set is fit with a straight horizontal line as opposed to a higher order polynomial.
Polynomial curves fitting points generated with a sine function. The black dotted line is the "true" data, the red line is a first degree polynomial, the green line is second degree, the orange line is third degree and the blue line is fourth degree. The first degree polynomial equation = + is a line with slope a. A line will connect any two ...
The function is named in honor of von Hann, who used the three-term weighted average smoothing technique on meteorological data. [6] [2] However, the term Hanning function is also conventionally used, [7] derived from the paper in which the term hanning a signal was used to mean applying the Hann window to it.
is a smoothing parameter, controlling the trade-off between fidelity to the data and roughness of the function estimate. This is often estimated by generalized cross-validation, [ 3 ] or by restricted marginal likelihood (REML) [ citation needed ] which exploits the link between spline smoothing and Bayesian estimation (the smoothing penalty ...
A mollifier (top) in dimension one. At the bottom, in red is a function with a corner (left) and sharp jump (right), and in blue is its mollified version. In mathematics, mollifiers (also known as approximations to the identity) are particular smooth functions, used for example in distribution theory to create sequences of smooth functions approximating nonsmooth (generalized) functions, via ...
For temporal smoothing in real-time situations, one can instead use the temporal kernel referred to as the time-causal limit kernel, [8] which possesses similar properties in a time-causal situation (non-creation of new structures towards increasing scale and temporal scale covariance) as the Gaussian kernel obeys in the non-causal case. The ...